Answer:
22.15 N/m
Explanation:
As we know potential energy = m*g*h
Potential energy of spring = (1/2)kx^2
m*g*h = (1/2)kx^2
Substituting the given values, we get -
(400)*(9.8)*(10) = (0.5)*(k)*(2.0^2)
k = 39200/2.645
k = 19600 N/m
For safety reasons, this spring constant is increased by 13 % So the new spring constant is
k = 19600 * 1.13 = 22148 N/m = 22.15 N/m
Assuming our "closed tube" is closed at only one end, then
<span> v = fλ = f*4L/n
</span><span> where "n" is the harmonic number. So
</span><span> L = nv / 4f = n*346m/s / 4*256Hz = n*0.38 m
</span> <span>Since the only option in your list that is an integer multiple of 0.38 m is 1.35 m
</span><span> I'd say that we're hearing the fourth harmonic.
answer is
</span><span>A. 1.35 m</span><span>
</span>
Answer:
At the sending end, the information to be sent, in the form of a time-varying electrical signal, is applied to a radio transmitter. ... The radio waves carry the information to the receiver location.
Explanation:
I believe the answer is vehicle weight