1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SpyIntel [72]
3 years ago
13

xConsider the following reduction potentials: Cu2+ + 2e– Cu E° = 0.339 V Pb2+ + 2e– Pb E° = –0.130 V For a galvanic cell employi

ng the Cu, Cu2+ and Pb, Pb2+ couples, calculate the maximum amount of work that would accompany the reaction of one mole of lead under standard conditions.
Physics
1 answer:
slega [8]3 years ago
5 0

Answer:

Approximately \rm 90\; kJ.

Explanation:

Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction (E^{\circ}(\text{cell})) is equal to

E^{\circ}(\text{cell}) = E^{\circ}(\text{cathode}) - E^{\circ}(\text{anode}).

There are two half-reactions in this question. \rm Cu^{2+} + 2\,e^{-} \rightleftharpoons Cu and \rm Pb^{2+} + 2\,e^{-} \rightleftharpoons Pb. Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of E^{\circ}(\text{cell}) should be positive.

In this case, E^{\circ}(\text{cell}) is positive only if \rm Cu^{2+} + 2\,e^{-} \rightleftharpoons Cu is the reaction takes place at the cathode. The net reaction would be

\rm Cu^{2+} + Pb \to Cu + Pb^{2+}.

Its cell potential would be equal to 0.339 - (-0.130) = \rm 0.469\; V.

The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:

\Delta G^{\circ} = n \cdot F \cdot E^{\circ} (\text{cell}),

where

  • n is the number moles of electrons transferred for each mole of the reaction. In this case the value of n is 2 as in the half-reactions.
  • F is Faraday's Constant (approximately 96485.33212\; \rm C \cdot mol^{-1}.)

\begin{aligned}\Delta G^{\circ} &= n \cdot F \cdot E^{\circ} (\text{cell})\cr &= 2\times 96485.33212 \times (0.339 - (-0.130)) \cr &\approx 9.0 \times 10^{4} \; \rm J \cr &= 90\; \rm kJ\end{aligned}.

You might be interested in
What are 5 landforms formed by river erosion
horsena [70]
Valleys, waterfalls, flood plains, meanders, and oxbow lakes 
8 0
3 years ago
Two glasses of water have the same thermal energy. must they have the same temperature? explain.
taurus [48]
No,because they  may have more particles 
3 0
3 years ago
The pH of coffee is _______ times greater than the pH of pure water.
DENIUS [597]

Answer:

zero times greater

Explanation:

Coffee's pH level is 5

Pure water's pH level is 7

3 0
3 years ago
How many meters are in 45 centimeters?
adell [148]

Explanation:

100 CM = 1 m

45 CM = 45 / 100 = 0.45 m

hope it helps:)

6 0
3 years ago
Read 2 more answers
A music fan at a swimming pool is listening to a radio on a diving platform. The radio is playing a constant- frequency tone whe
joja [24]

Answer:

The Doppler Effect is given by the following relation;

f' = \left (\dfrac{v + v_0}{v - v_s} \right) \times f

Where;

f' = The frequency the observer hears

f = Actual frequency of the wave

v = The velocity of the sound wave

v_o = The velocity of the observer

v_s = The velocity of the source

Where the observer is stationary, we have;

(i) When the source is moving in the direction of the observer

f' = \left (\dfrac{v }{v - v_s} \right) \times f

(ii) When the source is receding from the observer, we have;

f' = \left (\dfrac{v }{v + v_s} \right) \times f

Therefore;

(a) A person left behind on the platform

For a person left behind on the platform, we have that the radio source is receding, therefore, we have;

f' = \left (\dfrac{v }{v + v_s} \right) \times f

(1) Given that (v + v_s) > v, therefore, v < (v + v_s), f' < f, the frequency heard by the person left on the platform, f', is smaller (lower) than the frequency produced by the radio

(2) The frequency is not constant as the speed of the source is increasing while it under the acceleration due to gravity

(3) During the fall, the speed of the source continuously increases under the effect of gravitational attraction and therefore the frequency heard by the person on the platform becomes progressively smaller

(b) A person down below floating on a rubber raft

For the the person down below on the rubber raft, the radio source is advancing

Therefore, the radio source is moving towards the person at rest down on the rubber raft, therefore, we have;

f' = \left (\dfrac{v }{v - v_s} \right) \times f

(1) Given that (v - v_s) < v, therefore, f' > f, the frequency heard by the person down below floating on the rubber raft, f', is greater (higher) than the frequency produced by the radio

(2) The frequency is not constant as the speed of the source is increasing while it under the acceleration due to gravity

(3) During the fall, the speed of the source continuously increases under the effect of gravitational attraction and therefore the frequency heard by the person on the platform becomes progressively greater (higher)

Explanation:

7 0
3 years ago
Other questions:
  • Please answer this soon.<br> Thank u.
    12·1 answer
  • A ball dropped from a height of 50 meters, Determine the speed of the ball after 3 seconds
    15·1 answer
  • Brainliest!!! We observe that it takes 5,3 seconds to cross the distance of 35
    7·1 answer
  • Fluorine (F) has nine protons and ten neutrons. The atomic mass of fluorine is _____.
    15·1 answer
  • Gravity pulls downward on a rock with a force of 800 N. If you pull upward on the rock with a force of 400 N, what is the total
    7·2 answers
  • Why is it impossible to create a perpetual motion machine?
    14·1 answer
  • A quarterback back pedals 3.3 meters southward and then runs 5.7 meters northward. For this motion, what is the distance moved?
    14·1 answer
  • Asexual reproduction provides an advantage to organisms under which of the following conditions?
    8·1 answer
  • Ana vive a 3 km del instituto y María en la misma carretera, 500 m. Más lejos. Todas las mañanas, a las ocho y cuarto, cogen la
    6·1 answer
  • Plz help me out in need u to help me
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!