Answer:
the rate of heat loss is 2.037152 W
Explanation:
Given data
stainless steel K = 16 W 
diameter (d1) = 10 cm
so radius (r1) = 10 /2 = 5 cm = 5 × 
radius (r2) = 0.2 + 5 = 5.2 cm = 5.2 × 
temperature = 25°C
surface heat transfer coefficient = 6 6 W 
outside air temperature = 15°C
To find out
the rate of heat loss
Solution
we know current is pass in series from temperature = 25°C to 15°C
first pass through through resistance R1 i.e.
R1 = ( r2 - r1 ) / 4
× r1 × r2 × K
R1 = ( 5.2 - 5 )
/ 4
× 5 × 5.2 × 16 × 
R1 = 3.825 ×
same like we calculate for resistance R2 we know i.e.
R2 = 1 / ( h × area )
here area = 4
r2²
area = 4
(5.2 ×
)² = 0.033979
so R2 = 1 / ( h × area ) = 1 / ( 6 × 0.033979 )
R2 = 4.90499
now we calculate the heat flex rate by the initial and final temp and R1 and R2
i.e.
heat loss = T1 -T2 / R1 + R2
heat loss = 25 -15 / 3.825 ×
+ 4.90499
heat loss = 2.037152 W
A storage room
common sense lol
Answer:
i) 3750 veh/hr/ln
ii) 100 veh/mi/In
iii) 37.5 mph
Explanation:
number of lanes = 3
sf for both directions = 75 mph ( free mean speed )
Dj for both directions = 200 veh/mi/In
<u>Calculate the value of S0, D0 (veh/mi/ln) and maximum Vm (veh/hr)</u>
For either direction we will consider the total volume = 3 lanes
value of Dj = 3 lanes * 200 = 600 veh/mi/
i) value of SO
= ( Dj * sf ) / 4 = ( 600 * 75 ) / 4 = 11250 veh/hr = 3750 veh/hr/lane
ii) Value of DO
DO = Dj / 2 = 200 /2 = 100 veh/mi/In
iii) Value of Vm
= sf /2 = 75 / 2 = 37.5 mph
D. Camshaft gear backlash is being checked
hope this helps :)