Hey! How are you? My name is Maria, 19 years old. Yesterday broke up with a guy, looking for casual sex.
Write me here and I will give you my phone number - *pofsex.com*
My nickname - Lovely
Answer:
116.3 electrons
Explanation:
Data provided in the question:
Time, t = 2.55 ps = 2.55 × 10⁻¹² s
Current, i = 7.3 μA = 7.3 × 10⁻⁶ A
Now,
we know,
Charge, Q = it
thus,
Q = (7.3 × 10⁻⁶) × (2.55 × 10⁻¹²)
or
Q = 18.615 × 10⁻¹⁸ C
Also,
We know
Charge of 1 electron, q = 1.6 × 10⁻¹⁹ C
Therefore,
Number of electrons past a fixed point = Q ÷ q
= [ 18.615 × 10⁻¹⁸ ] ÷ [ 1.6 × 10⁻¹⁹ ]
= 116.3 electrons
Answer:
The total tube surface area in m² required to achieve an air outlet temperature of 850 K is 192.3 m²
Explanation:
Here we have the heat Q given as follows;
Q = 15 × 1075 × (1100 -
) = 10 × 1075 × (850 - 300) = 5912500 J
∴ 1100 -
= 1100/3
= 733.33 K

Where
= Arithmetic mean temperature difference
= Inlet temperature of the gas = 1100 K
= Outlet temperature of the gas = 733.33 K
= Inlet temperature of the air = 300 K
= Outlet temperature of the air = 850 K
Hence, plugging in the values, we have;

Hence, from;
, we have
5912500 = 90 × A × 341.67

Hence, the total tube surface area in m² required to achieve an air outlet temperature of 850 K = 192.3 m².
Answer:
Detailed working is shown
Explanation:
The attached file shows a detailed step by step calculation..