Answer:
asteroids are broken pieces of rock and are small compared to actual planets also asteroids travel in "belts" and not there own course
Explanation:
that was my best suggestion
Electrons have electrical magnetic fields that require them to have energy that is too intense for quarks
Multiplying the ideal gas law constant
Explanation:
Remember that power is defined as how much Work is done per unit of time.

Work is defined as the amount of force applied across a certain distance.

Since in both cases of climbing the ladder (on Earth and the moon), Luke coveres the same amount of <em>distance </em>in the same amount of <em>time</em>, we are only left with one difference between the two cases - gravity.
If you were to carry your backpack on the moon with the same load of text books, it would take less force to pick it up on the moon. Therefore, Luke expends less effort on the environment with less gravity - the moon.
To find the difference factor - you would want to divid the gravitational contants between earth and the moon.
Answer:
v = 2.974
Explanation:
Perhaps the formula should be
v = √(2*g*d (sin(θ) - uk*cos(θ) ) This is a bit easier to read.
v = √(2* 9.80*0.725(0.707 - 0.12*0.707) ) Substitute values. Find 2*g*d
v = √14.21 * (0.707 - 0.0849) Figure out Sin(θ) - uk cos(θ)
v = √14.21 * (0.6222)
v = √8.8422 Take the square root of the value
v = 2.974