Answer:
B.
Explanation:
The batteries make it so the chemical energy is being passed into the flashlight allowing it to work as designed forming light.
Explanation:
it is almost zero .this is because the distance and the electrostatic force are inversely proportional
Answer:
As given in the problem statement
frequency=1 KHz=1*10^3 Hz
V(t) is represented as
v(t) = 5sin(2 \pi 1000t) + 0.05sin(2 \pi 3000t)
v ( t ) = 5 s i n ( 2 π 1000 t ) + 0.05 s i n ( 2 π 3000 t )
Total harmonic distortion will be 234 Pi
<u>In modern physics</u>, as it was called "Stefan-Boltzmann law", the total energy radiated per unit surface area of a black body is directly proportional to the fourth power of the black body's temperature T
as:

where: P is the power (total energy radiated per second per square meter) and T is the temperature of a black body.
then we can make a ratio between the state of before quadruple (with subscript 1) and after (with subscript 2) as:

As

Then

then

- The factor will the total energy radiated per second per square meter increase = 256
Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.