It is a chemical change and a physical change
<span>The diver is heading downwards at 12 m/s
Ignoring air resistance, the formula for the distance under constant acceleration is
d = VT - 0.5AT^2
where
V = initial velocity
T = time
A = acceleration (9.8 m/s^2 on Earth)
In this problem, the initial velocity is 2.5 m/s and the target distance will be -7.0 m (3.0 m - 10.0 m = -7.0 m)
So let's substitute the known values and solve for T
d = VT - 0.5AT^2
-7 = 2.5T - 0.5*9.8T^2
-7 = 2.5T - 4.9T^2
0 = 2.5T - 4.9T^2 + 7
We now have a quadratic equation with A=-4.9, B=2.5, C=7. Using the quadratic formula, find the roots, which are -0.96705 and 1.477251164.
Now the diver's velocity will be the initial velocity minus the acceleration due to gravity over the time. So
V = 2.5 m/s - 9.8 m/s^2 * 1.477251164 s
V = 2.5 m/s - 14.47706141 m/s
V = -11.97706141 m/s
So the diver is going down at a velocity of 11.98 m/s
Now the negative root of -0.967047083 is how much earlier the diver would have had to jump at the location of the diving board. And for grins, let's compute how fast he would have had to jump to end up at the same point.
V = 2.5 m/s - 9.8 m/s^2 * (-0.967047083 s)
V = 2.5 m/s - (-9.477061409 m/s)
V = 2.5 m/s + 9.477061409 m/s
V = 11.97706141 m/s
And you get the exact same velocity, except it's the opposite sign.
In any case, the result needs to be rounded to 2 significant figures which is -12 m/s</span>
The period of the sound wave at the given frequency is determined as 0.00235 second.
<h3>
Period of the sound wave</h3>
The period of the sound wave at the given frequency is calculated as follows;
Period is reciprocal of frequency.
T = 1/f
T = 1/425
T = 0.00235 second
Thus, the period of the sound wave at the given frequency is determined as 0.00235 second.
Learn more about period here: brainly.com/question/10428039
#SPJ1
Answer:
1.84 m
Explanation:
For the small lead ball to be balanced at the tip of the vertical circle just before it is released, the reaction force , N equal the weight of the lead ball W + the centripetal force, F. This normal reaction ,N also equals the tension T in the string.
So, T = mg + mrω² = ma where m = mass of small lead ball, g = acceleration due to gravity = 9.8 m/s², r = length of rope = 1.10 m and ω = angular speed of lead ball = 3 rev/s = 3 × 2π rad/s = 6π rad/s = 18.85 rad/s and a = acceleration of normal force. So,
a = g + rω²
= 9.8 m/s² + 1.10 m × (18.85 rad/s)²
= 9.8 m/s² + 390.85 m/s²
= 400.65 m/s²
Now, using v² = u² + 2a(h₂ - h₁) where u = initial velocity of ball = rω = 1.10 m × 18.85 rad/s = 20.74 m/s, v = final velocity of ball at maximum height = 0 m/s (since the ball is stationary at maximum height), a = acceleration of small lead ball = -400.65 m/s² (negative since it is in the downward direction of the tension), h₁ = initial position of lead ball above the ground = 1.3 m and h₂ = final position of lead ball above the ground = unknown.
v² = u² + 2a(h₂ - h₁)
So, v² - u² = 2a(h₂ - h₁)
h₂ - h₁ = (v² - u²)/2a
h₂ = h₁ + (v² - u²)/2a
substituting the values of the variables into the equation, we have
h₂ = 1.3 m + ((0 m/s)² - (20.74 m/s)²)/2(-400.65 m/s²)
h₂ = 1.3 m + [-430.15 (m/s)²]/-801.3 m/s²
h₂ = 1.3 m + 0.54 m
h₂ = 1.84 m