The <em>estimated</em> displacement of the center of mass of the olive is
.
<h3>Procedure - Estimation of the displacement of the center of mass of the olive</h3>
In this question we should apply the definition of center of mass and difference between the coordinates for <em>dynamic</em> (
) and <em>static</em> conditions (
) to estimate the displacement of the center of mass of the olive (
):
(1)
Where:
- x-Coordinate of the i-th element of the system, in meters.
- y-Coordinate of the i-th element of the system, in meters.
- x-Component of the net force applied on the i-th element, in newtons.
- y-Component of the net force applied on the i-th element, in newtons.
- Mass of the i-th element, in kilograms.
- Gravitational acceleration, in meters per square second.
If we know that
,
,
,
,
,
and
, then the displacement of the center of mass of the olive is:
<h3>Dynamic condition
![\vec{r} = \left[\frac{(0)\cdot (0.50)\cdot (9.807)+(0)\cdot (0) + (1)\cdot (1.50)\cdot (9.807) + (1)\cdot (-3)}{(0.50)\cdot (9.807) + 0 + (1.50)\cdot (9.807)+(-3)}, \frac{(0)\cdot (0.50)\cdot (9.807) + (0)\cdot (3) + (2)\cdot (1.50)\cdot (9.807) +(2) \cdot (-2)}{(0.50)\cdot (9.807) + (3)+(1.50)\cdot (9.807)+(-2)} \right]](https://tex.z-dn.net/?f=%5Cvec%7Br%7D%20%3D%20%5Cleft%5B%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%2B%280%29%5Ccdot%20%280%29%20%2B%20%281%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%20%2B%20%281%29%5Ccdot%20%28-3%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%200%20%2B%20%281.50%29%5Ccdot%20%289.807%29%2B%28-3%29%7D%2C%20%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%280%29%5Ccdot%20%283%29%20%2B%20%282%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%20%2B%282%29%20%5Ccdot%20%28-2%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%20%283%29%2B%281.50%29%5Ccdot%20%289.807%29%2B%28-2%29%7D%20%20%5Cright%5D)
![\vec r = (0,704, 1.233)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r%20%3D%20%280%2C704%2C%201.233%29%5C%2C%5Bm%5D)
</h3>
<h3>Static condition</h3><h3>
![\vec{r}_{o} = \left[\frac{(0)\cdot (0.50)\cdot (9.807) + (1)\cdot (1.50)\cdot (9.807)}{(0.50)\cdot (9.807) + (1.50)\cdot (9.807)}, \frac{(0)\cdot (0.50)\cdot (9.807) + (2)\cdot (1.50)\cdot (9.807)}{(0.50)\cdot (9.807)+(1.50)\cdot (9.807)} \right]](https://tex.z-dn.net/?f=%5Cvec%7Br%7D_%7Bo%7D%20%3D%20%5Cleft%5B%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%281%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%20%281.50%29%5Ccdot%20%289.807%29%7D%2C%20%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%282%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%2B%281.50%29%5Ccdot%20%289.807%29%7D%20%20%5Cright%5D)
</h3><h3>
![\vec r_{o} = \left(0.75, 1.50)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7Bo%7D%20%3D%20%5Cleft%280.75%2C%201.50%29%5C%2C%5Bm%5D)
</h3><h3 /><h3>Displacement of the center of mass of the olive</h3>

![\overrightarrow{\Delta r} = (0.704-0.75, 1.233-1.50)\,[m]](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5CDelta%20r%7D%20%3D%20%280.704-0.75%2C%201.233-1.50%29%5C%2C%5Bm%5D)
![\overrightarrow{\Delta r} = (-0.046, -0.267)\,[m]](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5CDelta%20r%7D%20%3D%20%28-0.046%2C%20-0.267%29%5C%2C%5Bm%5D)
The <em>estimated</em> displacement of the center of mass of the olive is
. 
To learn more on center of mass, we kindly invite to check this verified question: brainly.com/question/8662931
Let's mention 2 examples of a mixture:
1) blood- blood is a mixture of blood plasma and blood cells. Blood is very important to many forms of life, including humans. It's therefore essential to living things!
2) ocean water! it's also a mixture and it covers a great portion of the Earth.
Answer:
frictonal force due to the surface of irregularities
Explanation:
Given that,
An object in free fall will fall d feet in t seconds, where d and t are related by the algebraic model as :
..........(1)
(a) We need to find the time taken by the object to fall 1148 ft. Put this in equation (1) as :


t = 8.47 seconds
(b) If the object is in free fall for 18.5 sec after it is dropped, then the height of the object is given by :

d = 5476 ft
Hence, this is the required solution.
When boat is sunk into the liquid the net buoyancy on the boat is counterbalanced by weight of the boat
So here weight of the boat = Buoyancy force
let say boat is sunk by distance "h"
now we can say


now by above force balance equation we can write




so boat will sunk by total 5 mm distance