Answer:
I hope this helps.
Explanation:
It's important to know the location of an active fault in order to determine the magnitude of the expected earthquake. There is a chance than an inactive fault can become active again. It's important that we take the locations into account in order to be prepared and ready for if it occurs.
Answer:
ΔP.E = 6.48 x 10⁸ J
Explanation:
First we need to calculate the acceleration due to gravity on the surface of moon:
g = GM/R²
where,
g = acceleration due to gravity on the surface of moon = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of moon = 7.36 x 10²² kg
R = Radius of Moon = 1740 km = 1.74 x 10⁶ m
Therefore,
g = (6.67 x 10⁻¹¹ N.m²/kg²)(7.36 x 10²² kg)/(1.74 x 10⁶ m)²
g = 2.82 m/s²
now the change in gravitational potential energy of rocket is calculated by:
ΔP.E = mgΔh
where,
ΔP.E = Change in Gravitational Potential Energy = ?
m = mass of rocket = 1090 kg
Δh = altitude = 211 km = 2.11 x 10⁵ m
Therefore,
ΔP.E = (1090 kg)(2.82 m/s²)(2.11 x 10⁵ m)
<u>ΔP.E = 6.48 x 10⁸ J</u>
I’m sorry i haven’t found the answer to this
Answer:
a)906.5 Nm^2/C
b) 0
c) 742.56132 N•m^2/C
Explanation:
a) The plane is parallel to the yz-plane.
We know that
flux ∅= EAcosθ
3.7×1000×0.350×0.700=906.5 N•m^2/C
(b) The plane is parallel to the xy-plane.
here theta = 90 degree
therefore,
0 N•m^2/C
(c) The plane contains the y-axis, and its normal makes an angle of 35.0° with the x-axis.
therefore, applying the flux formula we get
3.7×1000×0.3500×0.700×cos35°= 742.56132 N•m^2/C