Answer:
a) current in the second wire is 5.60A
b) opposite directions
Explanation:
a) We need to find the current of wire, the magnitude of the force per unit length between the two wires carrying current I and I¹ is given by


b) knowing that for a two parallel conductor carrying current in the same direction attracts each other, and for a two parallel conductors carrying carying current in opposite direction repels eachother.
therefore, since the two wire repel each other then the current in the second wire must flow in the opposite direction of the current in the first wire.
Every particle of mass is attracted to every other particle of mass. The magnitude of the force between two objects is proportional to the product of their masses, and inversely proportional to the square of the distance between them. The direction of the force is along the line between their centers.
(NOTE: Newton's 3rd law of motion tells us that gravitational forces always come in pairs. Between two objects, there are two forces ... one in each direction. Their strengths are equal ... Your weight on Earth is exactly equal to the Earth's weight on YOU.)
1) alpha particle, the element Radium undergoes alpha decay, releasing an alpha particle.
The biggest thing you're doing wrong is ignoring the units
when you're working with the quantities.
Now let's look at the rest of the problem:
The formula you used is correct:
Net flux through the surface = (net charge inside) / ε₀
and ε₀ = 8.85 x 10⁻¹² farad/meter.
What's the net charge inside the surface in this problem ?
It's (5.85 x 10⁷ electrons) x (the charge on each electron)
= (5.85 x 10⁷ electrons) x (-1.6 x 10⁻¹⁹ coulomb/electron)
= -9.36 x 10⁻¹² coulomb .
Finally, (net charge inside) / ε₀
= (-9.36 x 10⁻¹² coulomb) / (8.85 x 10⁻¹² farad/meter)
= -1.058 newton-m²/coulomb .
The sign and the significant figures in your answer are correct, so
we can see that you know what you're doing. The only thing left is
the order of magnitude. You most likely took one of the negative
exponents and made it positive. You got an answer that's 10²² too
small. Big deal. You could claim "that's close", and see whether you
can convince a teacher.