Answer:
It is an example of negative feedback mechanism
Explanation:
Negative feedback mechanism is the process by which the output of a system, process or mechanism is fed back into the input in order to reduce the error in the system.
In the system described in this question, the reabsorption of water is the output, a feedback signal is sent to the control center, which is the input in order to control the release of the hormone responsible for reabsorption of water into the blood.
Answer:
Impulse = 80Ns
Explanation:
Given the following data;
Mass = 3kg
Force = 20N
Time = 4 seconds
To find the impulse experienced by the object;
Impulse = force * time
Impulse = 20*4
Impulse = 80Ns
Therefore, the impulse experienced by the object is 80 Newton-seconds.
Answer:



Explanation:
g = Acceleration due to gravity = 
= Angle of slope = 
v = Velocity of child at the bottom of the slide
= Coefficient of kinetic friction
= Coefficient of static friction
h = Height of slope = 1.8 m
The energy balance of the system is given by

The speed of the child at the bottom of the slide is 
Length of the slide is given by


The force energy balance of the system is given by

The coefficient of kinetic friction is
.
For static friction

So, the minimum possible value for the coefficient of static friction is
.
The higher mass of a particle means it’ll be harder to move, slowing it down and the faster the particle is moving the higher the kinetic energy because there is more movement and pressure within the object with the energy
Answer:
143.352 watt.
Explanation:
So, in the question above we are given the following parameters or data or information that is going to assist us in answering the question above efficiently. The parameters are:
"A 1.8 m wide by 1.0 m tall by 0.65m deep home freezer is insulated with 5.0cm thick Styrofoam insulation"
The inside temperature of the freezer = -20°C.
Thickness = 5.0cm = 5.0 × 10^-2 m.
Step one: Calculate the surface area of the freezer. That can be done by using the formula below:
Area = 2[ ( Length × breadth) + (breadth × height) + (length × height) ].
Area = 2[ (1.8 × 0.65) + (0.65 × 1.0) + (1.8 × 1.0)].
Area = 7.24 m^2.
Step two: Calculate the rate of heat transfer by using the formula below;
Rate of heat transfer =[ thermal conductivity × Area (T1 - T2) ]/ thickness.
Rate of heat transfer = 0.022 × 7.24(25+20)/5.0 × 10^-2 = 143.352 watt.