Answer:
Option A. FeCl3
Explanation:
The following data were obtained from the question:
Mass of iron (Fe) = 6.25g
Mass of the compound formed = 18g
From the question, we were told that the compound formed contains chlorine. Therefore the mass of chlorine is obtained as follow
Mass of chlorine (Cl) = Mass of compound formed – Mass of iron.
Mass of chlorine (Cl) = 18 – 6.25
Mass of chlorine (Cl) = 11.75g
The compound therefore contains:
Iron (Fe) = 6.25g
Chlorine (Cl) = 11.75g
The empirical formula for the compound can be obtained by doing the following:
Step 1:
Divide by their molar mass
Fe = 6.25/56 = 0.112
Cl = 11.75/35.5 = 0.331
Step 2:
Divide by the smallest
Fe = 0.112/0.112 = 1
Cl = 0.331/0.112 = 3
The empirical formula for the compound is FeCl3
Answer:
Neon
Explanation:
Step 1: Given and required data
- Density of the gas (ρ): 1.57 g/L
- Ideal gas constant (R): 0.08206 atm.L/mol.K
Step 2: Convert T to Kelvin
We will use the following expression.
K = °C + 273.15 = 40.0 + 273.15 = 313.2 K
Step 3: Calculate the molar mass of the gas (M)
For an ideal gas, we will use the following expression.
ρ = P × M/R × T
M = ρ × R × T/P
M = 1.57 g/L × 0.08206 atm.L/mol.K × 313.2 K/2.00 atm
M = 20.17 g/mol
The gas with a molar mass of 20.17 g/mol is Neon.
Following are important constant that used in present calculations
Heat of fusion of H2O = 334 J/g
<span>Heat of vaporization of H2O = 2257 J/g </span>
<span>Heat capacity of H2O = 4.18 J/gK
</span>
Now, energy required for melting of ICE = <span> 334 X 5.25 = 1753.5 J .......(1)
Energy required for raising </span><span>the temperature water from 0 oC to 100 oC = 4.18 X 5.25 X 100 = 2195.18 J .............. (2)
</span>Lastly, energy required for boiling water = <span> 2257X 5.25 = 11849.25 J ......(3)
</span><span>
Thus, total heat energy required for entire process = (1) + (2) + (3)
= 1753.5 + 2195.18 + 11849.25
= </span><span>15797.93 J
</span><span> = 15.8 kJ
</span><span>Thus, 15797.93 J of energy is needed to boil 5.25 grams of ice.</span>