Answer:
Elimination
Explanation:
Since they are removing water from the solution, it is called elimination.
The number of moles of argon that must be released in order to drop.
Solution:
Initial Temperature = 25°c = 298 K
Final Temperature =125 °c = 398 K
Initial Moles (n1) = 0.40 mole
Now, Using the ideal gas law,
n1T1 = n2T2
0.400×298 = n2 × 398
n2 = 0.299 mol
Moles of Argon released
= 0.400-0.299
= 0.100 mol.
Pressure and force are related. That is using the physical equations if you know the other, you can calculate one using pressure = force/area. This pressure can be reported in pounds per square inch, psi, or Newtons per square meter N/m2. Kinetic energy causes air molecules to move faster. They hit the walls of the container more often and with greater force. The increased pressure inside the can may exceed the strength of the can and cause an explosion.
Learn more about The temperature here:-brainly.com/question/24746268
#SPJ1
Methane was unusually high is the correct option. Hence, option B is correct.
<h3>What is methane?</h3>
Methane is the simplest member of the paraffin series of hydrocarbons and is among the most potent greenhouse gases. Its chemical formula is
.
As the ice compacts over some time, tiny bubbles of the atmosphere or surroundings including greenhouse gases like carbon dioxide and methane—press inside the ice. These air pocket “fossils” give samples of what the atmosphere was kind when that layer of ice formed.
Based upon past studies and insights from current GHG levels, we assume that atmospheric levels of carbon dioxide and methane were unusually low.
Learn more about methane here:
brainly.com/question/2127750
#SPJ1
Answer:
54.075KJ
Explanation:
Since methane is the limiting reactant.
From the reaction equation,
16 g of methane absorbs 206 KJ of energy
4.20 g of methane will absorb 4.20 × 206/16 = 54.075KJ of energy was absorbed.
From the equation, the value of the enthalpy of reaction is positive, this means that energy is absorbed in the reaction of methane and water. Hence the answer.