Answer:

Explanation:
We are asked to find the specific heat capacity of a liquid. We are given the heat added, the mass, and the change in temperature, so we will use the following formula.

The heat added (q) is 47.1 Joules. The mass (m) of the liquid is 14.0 grams. The specific heat (c) is unknown. The change in temperature (ΔT) is 1.80 °C.
- q= 47.1 J
- m= 14.0 g
- ΔT= 1.80 °C
Substitute these values into the formula.

Multiply the 2 numbers in parentheses on the right side of the equation.


We are solving for the heat capacity of the liquid, so we must isolate the variable c. It is being multiplied by 25.2 grams * degrees Celsius. The inverse operation of multiplication is division, so we divide both sides of the equation by (25.2 g * °C).



The original measurements of heat, mass, and temperature all have 3 significant figures, so our answer must have the same. For the number we found that is the hundredth place. The 9 in the thousandth place to the right tells us to round the 6 up to a 7.

The heat capacity of the liquid is approximately 1.87 J/g°C.
An alkyne contains four carbon atoms.... so if you do 26 multiplied by 4 it equals 104... I do not know if that’s the answer so I apologize if it’s wrong :,)
Is this supposed to be a question?????
Answer:
D. exosphere is the outer layer of the thermosphere
When equilibrium has been reached so, according to this formula we can get the specific heat of the unknown metal and from it, we can define the metal as each metal has its specific heat:
Mw*Cw*ΔTw = Mm*Cm*ΔTm
when
Mw → mass of water
Cw → specific heat of water
ΔTw → difference in temperature for water
Mm→ mass of metal
Cw→ specific heat of the metal
ΔTm → difference in temperature for metal
by substitution:
100g * 4.18 * (40-39.8) = 8.23 g * Cm * (50-40)
∴ Cm = 83.6 / 82.3 = 1.02 J/g.°C
when the Cm of the Magnesium ∴ the unknown metal is Mg