Answer is miles sir your welcome it was simple
Assuming acceleration due to gravity of the moon is constant and there’s no initial velocity in the mans jump we can use one of the kinematic equations. x(final)=x(initial)+(1/2)gt^2. Plug in known values. 0=10-(1.62/2)t^2. The value 1.62 is acceleration of gravity on the moon. Now simply solve for t. t=3.513
My guess would be about 10 years because stars are hot balls of light that are reflections from years ago so it would most likely take awhile
-- In combination with 610 Hz, the beat frequency is 4 Hz.
So the unknown frequency is either (610+4) = 614 Hz
or else (610-4) = 606 Hz.
In combination with 605 Hz, the beat frequency will be
either (614-605) = 9 Hz or else (606-605) = 1 Hz.
-- In actuality, when combined with the 605 Hz, the beat
frequency is too high to count accurately. That must be
the 9 Hz rather than the 1 Hz.
So the unknown is (605+9) = 614 Hz.