1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
3 years ago
5

Which of the following processes are spontaneous? Check all that apply.

Physics
1 answer:
-Dominant- [34]3 years ago
5 0

Answer:

(1) A hot drink cooling to room temperature.

(2) The combustion of natural gas.

Explanation:

The spontaneous process is the process in which there is a release of energy and moves towards lower energy and a more thermodynamically stable energy state. All the natural processes are spontaneous.

There are two processes which are spontaneous in the given question are:

(1) A hot drink cooling to room temperature: In this, there is a decrease in energy and also it is a natural process and we know that all the natural processes are spontaneous.

(2) The combustion of natural gas: The fire is an example of an exothermic reaction. The combustion is a combination of a decrease in energy and an increase in entropy. So, this process occurs spontaneously.

You might be interested in
A ball is thrown horizontally from the top of a building at 2 m/s. It takes 3 seconds to reach the ground. How far did the ball
svlad2 [7]
Every second it travels 2 meters and it traveled 3 so (2 x 3) would be 6meters it traveled
4 0
3 years ago
Object A has mass mA = 9 kg and initial momentum vector pA,i = < 20, -6, 0 > kg · m/s, just before it strikes object B, wh
love history [14]

Answer:

p= kg m/s

Explanation:

Momentum is a vector quantity that represents the "amount of motion" of an object.

Mathematically, the momentum of an object is given by

p=mv

where

m is the mass of the object

v is the velocity

Since momentum is a vector, it also has a direction, which is the same as the velocity.

Therefore, if we have two objects, the total momentum of the two objects will be obtained from the vector sum of the individual momenta of the two objects.

In this problem we have:

p_A=  kg m/s is the momentum of object A

p_B = kg m/s is the momentum of object B

Therefore, the total momentum of objects A and B can be obtained by adding each components of A to the corresponding component of B, so:

p_x = 20 +6 = 26 kg m/s\\p_y = -6 +6 = 0 kg m/s\\p_z = 0 + 0 = 0 kg m/s

So the total initial momentum is

p= kg m/s

6 0
3 years ago
1) A uniform wooden beam, with mass of 120 and length L = 4 m, is supported as illustrated in the figure. If the static friction
Kobotan [32]

Answer:

1(a) 55.0°

1(b) 58.3°

2(a) 10.2 N

2(b) 2.61 m/s²

3(a) 76.7°

3(b) 12.8 m/s

3(c) 3.41 s

3(d) 21.8 m/s

3(e) 18.5 m

4(a) 7.35 m/s²

4(b) 31.3 m/s²

4(c) 12.8 m/s²

Explanation:

1) Draw a free body diagram on the beam.  There are five forces:

Weight force mg pulling down at the center of the beam,

Normal force Na pushing up at point A,

Friction force Na μa pushing left at point A,

Normal force Nb pushing perpendicular to the incline at point B,

Friction force Nb μb pushing up the incline at point B.

There are 3 unknown variables: Na, Nb, and θ.  So we're going to need 3 equations.

Sum of forces in the x direction:

∑F = ma

-Na μa + Nb sin φ − Nb μb cos φ = 0

Nb (sin φ − μb cos φ) = Na μa

Nb / Na = μa / (sin φ − μb cos φ)

Sum of forces in the y direction:

∑F = ma

Na + Nb cos φ + Nb μb sin φ − mg = 0

Na = mg − Nb (cos φ + μb sin φ)

Sum of torques about point B:

∑τ = Iα

-mg (L/2) cos θ + Na L cos θ − Na μa L sin θ = 0

mg (L/2) cos θ = Na L cos θ − Na μa L sin θ

mg cos θ = 2 Na cos θ − 2 Na μa sin θ

mg = 2 Na − 2 Na μa tan θ

Substitute:

Na = 2 Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

0 = Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

Na (1 − 2 μa tan θ) = Nb (cos φ + μb sin φ)

1 − 2 μa tan θ = (Nb / Na) (cos φ + μb sin φ)

2 μa tan θ = 1 − (Nb / Na) (cos φ + μb sin φ)

Substitute again:

2 μa tan θ = 1 − [μa / (sin φ − μb cos φ)] (cos φ + μb sin φ)

tan θ = 1/(2 μa) − (cos φ + μb sin φ) / (2 sin φ − 2 μb cos φ)

a) If φ = 70°, then θ = 55.0°.

b) If φ = 90°, then θ = 58.3°.

2) Draw a free body diagram of each mass.  For each mass, there are four forces.  For mass A:

Weight force Ma g pulling down,

Normal force Na pushing perpendicular to the incline,

Friction force Na μa pushing parallel down the incline,

Tension force T pulling parallel up the incline.

For mass B:

Weight force Mb g pulling down,

Normal force Nb pushing perpendicular to the incline,

Friction force Nb μb pushing parallel up the incline,

Tension force T pulling up the incline.

There are four unknown variables: Na, Nb, T, and a.  So we'll need four equations.

Sum of forces on A in the perpendicular direction:

∑F = ma

Na − Ma g cos θ = 0

Na = Ma g cos θ

Sum of forces on A up the incline:

∑F = ma

T − Na μa − Ma g sin θ = Ma a

T − Ma g cos θ μa − Ma g sin θ = Ma a

Sum of forces on B in the perpendicular direction:

∑F = ma

Nb − Mb g cos φ = 0

Nb = Mb g cos φ

Sum of forces on B down the incline:

∑F = ma

-T − Nb μb + Mb g sin φ = Mb a

-T − Mb g cos φ μb + Mb g sin φ = Mb a

Add together to eliminate T:

-Ma g cos θ μa − Ma g sin θ − Mb g cos φ μb + Mb g sin φ = Ma a + Mb a

g (-Ma (cos θ μa + sin θ) − Mb (cos φ μb − sin φ)) = (Ma + Mb) a

a = -g (Ma (cos θ μa + sin θ) + Mb (cos φ μb − sin φ)) / (Ma + Mb)

a = 2.61 m/s²

Plug into either equation to find T.

T = 10.2 N

3i) Given:

Δx = 3.7 m

vᵧ = 0 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

t = 1.25 s

Find: v₀ₓ, v₀ᵧ

Δx = v₀ₓ t + ½ aₓ t²

3.7 m = v₀ₓ (1.25 s) + ½ (0 m/s²) (1.25 s)²

v₀ₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

0 m/s = (-10 m/s²) (1.25 s) + v₀ᵧ

v₀ᵧ = 12.5 m/s

a) tan θ = v₀ᵧ / v₀ₓ

θ = 76.7°

b) v₀² = v₀ₓ² + v₀ᵧ²

v₀ = 12.8 m/s

3ii) Given:

Δx = D cos 57°

Δy = -D sin 57°

v₀ₓ = 2.96 m/s

v₀ᵧ = 12.5 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

c) Find t

Δx = v₀ₓ t + ½ aₓ t²

D cos 57° = (2.96 m/s) t + ½ (0 m/s²) t²

D cos 57° = 2.96t

Δy = v₀ᵧ t + ½ aᵧ t²

-D sin 57° = (12.5 m/s) t + ½ (-10 m/s²) t²

-D sin 57° = 12.5t − 5t²

Divide:

-tan 57° = (12.5t − 5t²) / 2.96t

-4.558t = 12.5t − 5t²

0 = 17.058t  − 5t²

t = 3.41 s

d) Find v

vₓ = aₓt + v₀ₓ

vₓ = (0 m/s²) (3.41 s) + 2.96 m/s

vₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

vᵧ = (-10 m/s²) (3.41 s) + 12.5 m/s

vᵧ = -21.6 m/s

v² = vₓ² + vᵧ²

v = 21.8 m/s

e) Find D.

D cos 57° = 2.96t

D = 18.5 m

4) Given:

R = 90 m

d = 140 m

v₀ = 0 m/s

at = 0.7t m/s²

The distance to the opposite side of the curve is:

140 m + (90 m) (π/2) = 281 m

a) Find Δx and v if t = 10.5 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (10.5)²

vt = 38.6 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (10.5)³

Δx = 135 m

The car has not yet reached the curve, so the acceleration is purely tangential.

at = 0.7 (10.5)

at = 7.35 m/s²

b) Find Δx and v if t = 12.2 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (12.2)²

vt = 52.1 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (12.2)³

Δx = 212 m

The car is in the curve, so it has both tangential and centripetal accelerations.

at = 0.7 (12.2)

at = 8.54 m/s²

ac = v² / r

ac = (52.1 m/s)² / (90 m)

ac = 30.2 m/s²

a² = at² + ac²

a = 31.3 m/s²

c) Given:

Δx = 187 m

v₀ = 0 m/s

at = 3 m/s²

Find: v

v² = v₀² + 2aΔx

v² = (0 m/s)² + 2 (3 m/s²) (187 m)

v = 33.5 m/s

ac = v² / r

ac = (33.5 m/s)² / 90 m

ac = 12.5 m/s²

a² = at² + ac²

a = 12.8 m/s²

5 0
3 years ago
I need help by today guys plz help
NISA [10]

radio waves bc they have the longest wave lenthgs in a magnetic spectrum

5 0
3 years ago
2. A ball tied to a pole by a rope swings in a circular path with a centripetal acceleration of 2.7 m/s. If the ball has a
Helga [31]

Answer: The diameter of the circular path is 2.96m

Explanation: centripetal acceleration = tangential speed^2 / radius of the circular path.

Centripetal acceleration = 2.7m/s^2

Tangential speed = 2.0m/s

Radius = 2.0^2 / 2.7 = 4/2.7

= 1.48m

Diameter = radius*2

= 1.48*2 = 2.96m.

3 0
3 years ago
Other questions:
  • Cumulus and cumulonimbus clouds are most likely to be formed by what
    11·2 answers
  • Two masses exert a force of 1,161 N on each other when they are 20 km apart. How much force will these two masses exert on each
    12·1 answer
  • How are science and technology related?
    13·2 answers
  • A block of lead has dimensions of 4.50cm by 5.20cm by 6.00cm. The block weighs 1587g. From this information, calculate the densi
    5·1 answer
  • When water waves approach an obstacle such as the supports holding up a pier, they will bend around the supports. This wave phen
    6·1 answer
  • A river has a steady speed of 0.480 m/s. a student swims upstream a distance of 1.00 km and swims back to the starting point. (a
    13·1 answer
  • Kepler's third law is founded on a mathematical formula that is based on the inverse relationship between a planet's orbital vel
    9·2 answers
  • A skateboarder is traveling at a velocity of 8 m/s. She slows down and comes to a stop in 4 seconds. Calculate the skater’s acce
    14·1 answer
  • How did the discovery of eris force astronomers to reconsider the definition of planet?
    7·1 answer
  • using dimensional analysis find the relation between the velocities of transverse waves produced from the vibration of thin homo
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!