I think variation.... have a great day
Answer:
(a) adding 0.050 mol of HCl
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base -or vice versa-.
In the buffer:
1.0L × (0.10 mol / L) = 0.10 moles of HF -<em>Weak acid-</em>
1.0L × (0.050 mol / L) = 0.050 moles of NaF -<em>Conjugate base-</em>
-The weak acid reacts with bases as NaOH and the conjugate base reacts with acids as HCl-
Thus:
<em>(a) adding 0.050 mol of HCl:</em> The addition of 0.050moles of HCl produce the reaction of 0.050 moles of NaF producing HF. That means after the reaction, all NaF is consumed and you will have in solution just the weak acid <em>destroying the buffer</em>.
(b) adding 0.050 mol of NaOH: The NaOH reacts with HF producing more NaF. Would be consumed just 0.050 moles of HF -remaining 0.050 moles of HF-. Thus, the buffer <em>wouldn't be destroyed</em>.
(c) adding 0.050 mol of NaF: The addition of conjugate base <em>doesn't destroy the buffer</em>
I think it is not possible to make cd without plastic . because except plastic no other material is so durable for making cd.
Answer:
Exothermic Reaction
Explanation:
Its a combustion reaction and they are always exothermic in nature.
Answer:
1.47 atm
Explanation:
Step 1: Given data
- Initial volume (V₁): 32.4 L
- Initial pressure (P₁): 1 atm (standard pressure)
- Initial temperature (T₁): 273 K (standard temperature)
- Final volume (V₂): 28.4 L
- Final temperature (T₂): 352 K
Step 2: Calculate the final pressure of the gas
We can calculate the final pressure of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
P₂ = P₁ × V₁ × T₂ / T₁ × V₂
P₂ = 1 atm × 32.4 L × 352 K / 273 K × 28.4 L = 1.47 atm