1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PSYCHO15rus [73]
4 years ago
13

A steady current I flows through a wire of radius a. The current density in the wire varies with r as J = kr, where k is a const

ant and r is the distance from the axis of the wire. Find expressions for the magnitudes of the magnetic field inside and outside the wire as a function of r. (Hint: Find the current through an Ampèrian loop of radius r using Ithru = J · dA. Use the following as necessary: μ0, I, a and r. Do not substitute numerical values; use variables only.)a. B inside=?b. B outside=?
Physics
1 answer:
grin007 [14]4 years ago
8 0

Answer:

Explanation:

we can consider an element of radius r < a and thickness dr.  and Area of this element is

dA=2\pi r dr

since current density is given

J=kr

then , current through this element will be,

di_{thru}=JdA=(kr)(2\pi\,r\,dr)=2\pi\,kr^2\,dr

integrating on both sides between the appropriate limits,

\int_0^Idi_{thru}=\int_0^a2\pi\,kr^2\,dr&#10;\\\\&#10;I=\frac{2\pi\,ka^3}{3} -------------------------------(1)

Magnetic field can be found by using Ampere's law

\oint{\vec{B}\cdot\,d\vec{l}}=\mu_0\,i_{enc}

for points inside the wire ( r<a)

now, consider a point at a distance 'r' from the center of wire. The appropriate Amperian loop is a circle of radius r.

by applying the Ampere's law, we can write

\oint{\vec{B}_{in}\cdot\,d\vec{l}}=\mu_0\,i_{enc}&#10;

by symmetry \vec{B} will be of uniform magnitude on this loop and it's direction will be tangential to the loop.

Hence,

B_{in}\times2\pi\,l=\mu_0\int_0^r(kr)(2\pi\,r\,dr)=&#10;\\\\2\pi\,B_{in} l=2\pi\mu_0k \frac{r^3}{3}&#10;\\\\B_{in}=\frac{\mu_0kl^2}{3}&#10;

now using equation 1, putting the value of k,

B_{in} = \frac{\mu_{0} l^2 }{3 } \,\,\, \frac{3I}{2 \pi a^3}&#10;\\\\B_{in} = \frac{ \mu_{0} I l^2}{2 \pi a^3}&#10;

B)

now, for points outside the wire ( r>a)

consider a point at a distance 'r' from the center of wire. The appropriate Amperian loop is a circle of radius l.

applying the Ampere's law

\oint{\vec{B}_{out}\cdot\,d\vec{l}}=\mu_0\,i_{enc}&#10;

by symmetry \vec{B} will be of uniform magnitude on this loop and it's direction will be tangential to the loop. Hence

B_{out}\times2\pi\,r=\mu_0\int_0^a(kr)(2\pi\,r\,dr)&#10;\\\\2\pi\,B_{out}r=2\pi\mu_0k\frac{a^3}{3}&#10;\\\\B_{out}=\frac{\mu_0ka^3}{3r}&#10;

again using,equaiton 1,

B_{out}= \mu_0 \frac{a^3}{3r} \times \frac{3 I}{2 \pi a^3}&#10;\\\\B_{out} = \frac{ \mu_{0} I}{2 \pi r}

You might be interested in
A missile is moving 1350 m/s at a 25.0 angle
murzikaleks [220]
I will answer both versions assuming what you want to know is the distance it travels up from and over the ground. and how long until it reaches space. 540 meters per second up and over. to reach space which is 100km above sea level, it would take about 5400 minutes
4 0
3 years ago
Is work done when falling towards earth while skydiving???
GuDViN [60]
You betcha !

-- Work is done whenever a force acts through a distance.

-- The skydiver has weight.  That's the force acting on him.

-- As time goes on, I'm assuming that he falls from one height
to a lower height.  That's the distance the force acts through.

-- The work done on him is  (force) times (distance)

                                           (his weight) x (distance he falls).

So where is the machine that does all this work ?

-- It's GRAVITY that does the work on him as he falls.

So how did he get all this energy in the first place ?
Where did it come from ?

-- From the airplane that lifted him up to height from which he jumped !
3 0
3 years ago
A ball rolls off a cliff with a horizontal speed of 3.0 m/s. If the cliff is 20 m high, how far
nasty-shy [4]
Din jb bhn I’m MINU jb grm kb kb khol own drd hum TV din kro or fun
6 0
3 years ago
Explain the following observations:
Deffense [45]

Answer and Explanation:

a. An oxygen-filled balloon is not able to float in the air, because the oxygen inside the balloon is of the same density, that is, the same "weight" as the oxygen outside the balloon and present in the atmosphere. The balloon can only float if the gas inside it is less dense than atmospheric oxygen. Helium gas is less dense than atmospheric gas, so if a balloon is filled with helium gas, that balloon will be able to float because of the difference in density.

b. The ship is able to float in the water because its steel construction is hollow and full of air. This makes the average density of this ship less than the density of water, which makes the ship lighter than water and for this reason, this ship is able to float. In addition, the ship is partially immersed, allowing the weight of the ship on the water to counteract the buoyant force that the water promotes on the ship. Weight and buoyant are two opposing forces that keep the ship afloat.

6 0
3 years ago
What statement best describes what it means to maximize your efforts in sports?
Yuliya22 [10]

What statement best describes what it means to maximize your efforts in sports?

D.none of the above

5 0
3 years ago
Other questions:
  • Cranium and facial bones compose the
    13·1 answer
  • A wave a strong undertow. What kind of wave is it
    6·1 answer
  • An athlete is working out in the weight room.he steadily holds 50 kilograms above his head for 10 seconds which statement is tru
    5·1 answer
  • A 115 kg hockey player, Adam, is skating east whenever he tackles a 133 kg player, Bob, skating west at -1.59 m/s. Afterwards, t
    6·1 answer
  • Two diamonds begin a free fall from rest from the same height 0.9 s apart. How long after the first object begins to fall will t
    6·1 answer
  • How are metals produced? Does this process use sustainable methods? Explain
    15·1 answer
  • How do evaporation and condensation relate to heat
    13·1 answer
  • A 1.10 m wire has a mass of 5.90 g and is under a tension of 160 N. The wire is held rigidly at both ends and set into oscillati
    5·2 answers
  • Read this quotation:
    15·2 answers
  • A student is trying to demonstrate static electricity, so they rub two identical balloons with a neutral rabbit fur to give them
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!