Given the equation for the Speed of a Satellite
v = SqRt{Gravitational Constant}{Mass of Earth} divided by the radius given in your problem
we have:
(square root whole term on right side)
v = G Me
———
r
so. (6.67x10^-11)(5.97x10^24)
___________________
(8.0x10^6)
v = 7055 m/s (which is reasonable)
so utilize the Kinetic Energy Formula
KE = 1/2mv^2
KE = 1/2(200)(7055)^2
KE = 4.977x10^9 J
Answer:
(A) a heuristic
Explanation:
A heuristic:It is a reasoning strategy to find answers, make judgement about any something."
It is possible to choose between the options given, we have the following interpretation as; Interpretation: "A heuristic: finding answers is a thinking technique, evaluating something." Mechanism: In the heuristic approach the method is to find solutions or answers to a question by choosing the right and optimal compositions.
Solution :
Speed of the air craft,
= 262 m/s
Fuel burns at the rate of,
= 3.92 kg/s
Rate at which the engine takes in air,
= 85.9 kg/s
Speed of the exhaust gas that are ejected relative to the aircraft,
=921 m/s
Therefore, the upward thrust of the jet engine is given by

F = 85.9(921 - 262) + (3.92 x 921)
= 4862635.79 + 3610.32
= 
Therefore thrust of the jet engine is
.
Explanation:
It is given that,
Magnitude of charge, 
It moves in northeast direction with a speed of 5 m/s, 25 degrees East of a magnetic field.
Magnetic field, 
Velocity, 
![v=[(4.53)i+(2.11)j]\ m/s](https://tex.z-dn.net/?f=v%3D%5B%284.53%29i%2B%282.11%29j%5D%5C%20m%2Fs)
We need to find the magnitude of force on the charge. Magnetic force is given by :

![F=15\times 10^{-6}[(4.53i+2.11j)\times 0.08\ j]](https://tex.z-dn.net/?f=F%3D15%5Ctimes%2010%5E%7B-6%7D%5B%284.53i%2B2.11j%29%5Ctimes%200.08%5C%20j%5D)
<em>Since</em>, 
![F=15\times 10^{-6}[(4.53i)\times (0.08)\ j]](https://tex.z-dn.net/?f=F%3D15%5Ctimes%2010%5E%7B-6%7D%5B%284.53i%29%5Ctimes%20%280.08%29%5C%20j%5D)


So, the force acting on the charge is
and is moving in positive z axis. Hence, this is the required solution.
Answer:
Explanation:
Potential energy, which is the energy a body assumes at a position, can be calculated using the formula:
P.E = m × g × h
Where;
m = mass (kg)
g = acceleration due to gravity (10m/s²)
h = height (m)