<h3>Answer</h3>
option B)
19N
<h3>Explanation</h3>
If the object is at equilibrium, then the net force acting upon the object should be 0 N. Thus, if all the forces are added together, horizontal and vertical forces separately, then the resultant force (the vector sum) should be 0 Newton.
As we only need to find the magnitude of x-component of force F
so find all x component/horizontal forces acting on the object.
50cos(40) - 40cos(25) + 30cos(55) + x = 0
38.30 - 36.25 + 17.21 + x + = 0
19.26 + x = 0
x = - 19.26
x ≈ 19 (magnitude only)
To increase it's size
Waxing is the opposite of waning, which is to decrease.
The answer to this question is: it depends. It depends on the arrangement of the capacitors in a circuit: it can be either in series or in parallel. The difference is shown in the picture.
Capacitors are like batteries in a way that they store power from the source. It has some rules depending on the type of circuit. For parallel circuits, the voltage across each capacitor is equal. Therefore, V₁=V₂=V₃.
On the other hand, if the capacitors are arranged in series, the voltage across each capacitor should add up to the total voltage of the source. Therefore, V₁+V₂+V₃ = Total Voltage.
Answer:
<u />
<u />
Explanation:
From the question we are told that:
The Electric field of strength direction =Right
The Velocity of The First Electron=V_0
The Velocity of The Second Electron=V_0
Therefore

Generally, the equation for the Horizontal Displacement of electron is mathematically given by

Where
Acceleration is given as

And
Time

Therefore horizontal displacement towards the left is

<u />
<u />
Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.