Answer:
No, not necessarily
Explanation:
If an object is moving with an acceleration that causes its speed to be reduced, there will be a moment in which it reaches v = 0, but this doesn't necessarily mean that the acceleration isn't acting anymore. If the object continues its movement with the same acceleration, it's velocity will become negative.
An example of an object that has zero velocity but non-zero acceleration:
If you throw an object in the air with a certain velocity, it will move vertically, reducing its velocity in a 9,8
rate (which is the acceleration caused by gravity). At a certain point, the object will reach its maximum height, and will start to fall. In the exact moment that it reaches the maximum height, before it starts falling, its velocity is zero, but gravity is still acting on the object (this is the reason why it starts falling instead of just being stopped at that point). Therefore, at that point, the object has zero velocity but an acceleration of 9,8
.
<span>The diameter of the Moon is 3,474 km. Now, let's compare this to the Earth. The diameter of the Earth is 12,742 km. This means that the Moon is approximately 27% the size of the Earth.</span>
Impulse is a force acting briefly on a body and producing a finite change of momentum.
This relates to momentum because impulse is a change in momentum. Impulse = momentum. Since force is a vector quantity, impulse is also a vector in the same direction. Impulse applied to an object produces equivalent vector change in its linear momentum, also in the same direction. m•(triangle)v
Answer:
The y-component of the electric force on this charge is 
Explanation:
<u>Given:</u>
- Electric field in the region,

- Charge placed into the region,

where,
are the unit vectors along the positive x and y axes respectively.
The electric field at a point is defined as the electrostatic force experienced per unit positive test charge, placed at that point, such that,

Thus, the y-component of the electric force on this charge is 
Answer:
Explanation:
Given that,
A point charge is placed between two charges
Q1 = 4 μC
Q2 = -1 μC
Distance between the two charges is 1m
We want to find the point when the electric field will be zero.
Electric field can be calculated using
E = kQ/r²
Let the point charge be at a distance x from the first charge Q1, then, it will be at 1 -x from the second charge.
Then, the magnitude of the electric at point x is zero.
E = kQ1 / r² + kQ2 / r²
0 = kQ1 / x² - kQ2 / (1-x)²
kQ1 / x² = kQ2 / (1-x)²
Divide through by k
Q1 / x² = Q2 / (1-x)²
4μ / x² = 1μ / (1 - x)²
Divide through by μ
4 / x² = 1 / (1-x)²
Cross multiply
4(1-x)² = x²
4(1-2x+x²) = x²
4 - 8x + 4x² = x²
4x² - 8x + 4 - x² = 0
3x² - 8x + 4 = 0
Check attachment for solution of quadratic equation
We found that,
x = 2m or x = ⅔m
So, the electric field will be zero if placed ⅔m from point charge A, OR ⅓m from point charge B.