Answer:
specific gravity = 0.8
specific gravity of solution = 2
Explanation:
given data
rectangular block above water = 0.400 in
rectangular block below water = 1.60 in
material floats below water = 0.800 in
solution
first we get here specific gravity of block that is
specific gravity = block vol below ÷ total block vol × specific gravity water ..............1
put here value we get
specific gravity =
× 1
specific gravity = 0.8
and now we get here specific gravity of solution that is express as
specific gravity of solution = total block vol ÷ block vol below × specific gravity block ........................2
put here value we get
specific gravity of solution =
× 0.8
specific gravity of solution = 2
Answer:
The answer is "151.25 J and -547.64 J".
Explanation:

Using formula:

Calculating the Work by net force
The above work is converted into thermal energy.
Now,

Answer:0.318 revolutions
Explanation:
Given
Initially Propeller is at rest i.e. 
after 

using 


Revolutions turned in 2 s



To get revolution 
=
Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:
