1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ki77a [65]
3 years ago
12

An engineer in a locomotive sees a car stuck on the track at a railroad crossing in front of the train. When the engineer first

sees the car, the locomotive is 300 m from the crossing and its speed is 18 m/s. If the engineer’s reaction time is 0.45 s, what should be the magnitude of the minimum deceleration to avoid an accident? Answer in units of m/s 2 .
Physics
2 answers:
nordsb [41]3 years ago
8 0

Answer:

a=0.555m/s^2

Explanation:

First we find the distance traveled from the moment the engineer reacts to the car, assuming uniform movement

X=VT

X=(18)(0.45)=8.1m

then we find the distance at which the deceleration begins, which is obtained by subtracting the total distance with the inner result

X=300-8.1=291.9

finally we use the equation for constant acceleration

Vf=0 final speed

Vo=18m/s= initial speed

X=291.9m

(Vf^2-Vo^2)/2X=a

(0-18^2)/(2*291.9)=a

a=0.555m/s^2

Leona [35]3 years ago
5 0

Answer:

- 0.56 m/s 2

Explanation:

To calculate the magnitude of deceleration to avoid the collision

distance = 300 m

initial speed = 18 m/s

reaction time ( t ) = 0.45 s

first calculate the distance traveled by the engineer/train during his reaction time

D₁ = initial speed * reaction time = 18 * 0.45 = 8.1 m

Then the remaining distance before impact between the car and Train would be

= distance - distance traveled during reaction time

= 300 m - 8.1 m = 291.9 m

from the equation of motion of objects

V² = U² + 2ax  (equation 1)

To avoid impact the final velocity( v )  would be ( 0 )

u = initial speed ( 18 m/s )

a = acceleration/deceleration ( ? )

x = remaining distance before collision ( 291.9 m )

hence equation 1 becomes

a = -\frac{18^{2} }{2*291.9}   =  - \frac{324}{583.8}  = - 0.56 m/s 2

note: the answer is in negative because the Locomotive is decelerating and not accelerating

You might be interested in
A video game includes an asteroid that is programmed to move in a straight line across a 17-inch monitor according to the equati
Ainat [17]

Answer:

The asteroid's acceleration at this point is 2.71\ m/s^2

Explanation:

The equation that governs the trajectory of asteroid is given by :

x=6.5t-2.3t^3

The velocity of asteroid is given by :

v=\dfrac{dx}{dt}\\\\v=\dfrac{d(6.5t-2.3t^3)}{dt}\\\\v=6.5-6.9t^2

At some point during the trip across the screen, the asteroid is at rest. It means, v = 0

So,

6.5-6.9t^2=0\\\\t=0.971\ s                      

Acceleration,

a=\dfrac{dv}{dt}\\\\a=\dfrac{d(6.5-6.9t^2)}{dt}\\\\a=-13.8t                        

Put t = 0.971 s

a=-13.8\times 0.197\\\\a=-2.71\ m/s^2

So, the asteroid's acceleration at this point is 2.71\ m/s^2 and it is decelerating.

6 0
3 years ago
A stuntwoman is going to attempt a jump across a canyon that is 77 m wide. The ramp on the far side of the canyon is 25 m lower
liq [111]

initial speed of the stuntman is given as

v = 28 m/s

angle of inclination is given as

\theta = 15 degree

now the components of the velocity is given as

v_x = 28 cos15 = 27.04 m/s

v_y = 28 sin15 = 7.25 m/s

here it is given that the ramp on the far side of the canyon is 25 m lower than the ramp from which she will leave.

So the displacement in vertical direction is given as

\delta y = -25 m

\delta y = v_y * t + \frac{1}{2} at^2

-25 = 7.25 * t - \frac{1}{2}*9.8* t^2

by solving above equation we have

t = 3.12 s

Now in the above interval of time the horizontal distance moved by it is given by

d_x = v_x * t

d_x = 27.04 * 3.12 = 84.4 m

since the canyon width is 77 m which is less than the horizontal distance covered by the stuntman so here we can say that stuntman will cross the canyon.

5 0
3 years ago
At a certain place, Earth's magnetic field has magnitude B =0.703 gauss and is inclined downward at an angle of 75.4° to the hor
Irina18 [472]

Answer:

The charge flows in coulombs is

dq=1.843x10^{-5}C

Explanation:

The current magnitude of current is given by the resistance and the induced Emf as:

I=N*\frac{dF}{Rdt}

\frac{dq}{dt}=\frac{dF}{Rdt}=dq=N*\frac{dF}{R}

dq=\frac{N*\beta*A*(Cos(\alpha_f)-Cos(\alpha_i}{R}

N=1300, \beta=0.703, A=\pi*r^2=\pi*0.10^2=0.01\pi m^2, R=99.4+202=301.4Ω

\alpha_f=14.6,\alpha_i=165.4

Replacing :

dq=\frac{1300*0.703x10^{-4}*0.01\pi*(0.9667-(-0.9667))}{202+99.4}

dq=1.843x10^{-5}C

5 0
3 years ago
Global Precipitation Measurement (GPM) is a tool scientists use to forecast weather. Which statements describe GPM? Select three
lyudmila [28]

Answer:

B.It is a satellite that collects data about rain and snow

C.Its orbit covers 90 percent of Earth’s surface

F.The sensors measure microwaves

5 0
3 years ago
Learning Goal: To be able to calculate work done by a constant force directed at different angles relative to displacement
svlad2 [7]

Answer:

Woke done, W = 4156.92 Joules

Explanation:

The work done by the force can be calculated as :

W=F\times s

W=Fs\ cos\theta

\theta is the angle between force and the displacement

It is assumed to find the work done for the given parameters i.e.

Force, F = 30 N

Distance travelled, s = 160 m

Angle between force and displacement, \theta=30

Work done is given by :

W=Fs\ cos\theta

W=30\times 160\ cos(30)

W = 4156.92 Joules

So, the work done by the object is 4156.92 Joules. Hence, this is the required solution.

5 0
3 years ago
Other questions:
  • What are the units for the spring constant, k? A. newton meters B. newton seconds C. newtons/meter D. newtons/second E. newtons/
    10·2 answers
  • If the work function for a certain metal is 1.8eV, what is the stopping potential for electrons ejected from the metal when ligh
    12·1 answer
  • El tubo de entrada que suministra presión de aire para operar un gato hidráulico tiene 2 cm de diámetro. El pistón de salida es
    6·1 answer
  • In a chemical reaction, which is the MOSTLY LIKELY reactant for these products? A:3O2 B:CO2 C: 2KCl D:CaCO3
    12·2 answers
  • How do invasive species spread? identify three methods.Why do invasive species pose such a threat?
    15·1 answer
  • What is Pascal principle
    15·1 answer
  • A 0.800-kg ball is tied to the end of a string 1.60 m long and swung in a vertical circle. (a)During one complete circle, starti
    7·1 answer
  • ) What is the electric potential due to the nucleus of hydrogen at a distance of 7.50× 10-11 m? Assume the potential is equal to
    13·2 answers
  • A.
    7·1 answer
  • Calculate the number of moles of gas present in the sealed container at a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!