Increasing the temperature causes an increase in the average kinetic energy of the particles of a material.
<h3>
What is average kinetic energy of particles?</h3>
The average kinetic energy of particles is the energy possessed by particles due to their constant motion.
The constant motion of particles occurs due to the energy acquired by the particles, when the temperature of the particles increases, the average kinetic energy increases which in turn increases the speed of the particles.
Thus, we can conclude that, increasing the temperature causes an increase in the average kinetic energy of the particles of a material.
Learn more about average kinetic energy here: brainly.com/question/9078768
<h2>
Final velocity is 13.37 m/s</h2>
Explanation:
We have equation of motion v = u + at
Initial velocity, u = 7.3 m/s
Final velocity, v = ?
Time, t = 7.4 s
Acceleration,a = 0.82 m/s²
Substituting
v = u + at
v = 7.3 + 0.82 x 7.4
v = 13.368 m/s
Final velocity is 13.37 m/s
Answer: 44 N/m
Explanation:
Finding the interatomic spring stiffness
Because in our model all the bonds are assumed to be the same, the interatomic spring stiffness ks, interatomic is determined by adding the springs . The details of that addition are below, but the final result is that the interatomic spring stiffness is related to the spring stiffness of the wire like so:
Find the attached file for solution
According to Newton's second law of motion, Force is the product of mass and acceleration of the object.
So, F = m * a
Here, m = 210 Kg
a = 2.4 * 10⁵ m/s²
Substitute their values,
F = 210 * 2.4 * 10⁵ N
F = 504 * 10⁵ N
F = 5.04 * 10⁷ N
In short, Your Answer would be Option B
Hope this helps!