Answer:They stop because jet streams follow boundaries between hot and cold air.
Explanation:
Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.
Answer: The question has some missing details. The initial velocity given as u = -6.5i + 17j + 13k and the final velocity v = -2.8i + 17j -9.3k.
a) = (1.82i - 9.69k)m/s2
b) magnitude = 9.85m/s2
c) direction = 280.64 degree
Explanation:
The detailed and step is shown in the attachment.
Answer:
a)3312 x 10⁴ J
b)I = 57.5 A
c)9200 W
Explanation:
Given that
P =4600 W
Time t= 2 h = 2 x 3600 s= 7200 s
We know that
1 W = 1 J/s
a)
Energy stored in the battery = P .t
=4600 x 7200 J
=3312 x 10⁴ J
b)
We know that power P given as
P = V .I
V=Voltage ,I =Current
4600 = 80 x I
I = 57.5 A
c)
The energy supplied = 4600 x 2 = 9200 W
Answer:
V_f = 287.04 mL
Explanation:
We are given the initial/original volume of the glycerine as 285 mL.
Now, after it is finally cooled back to 20.0 °C , its volume is given by the formula;
V_f = V_i (1 + βΔT)
Where;
V_f is the final volume
V_i is the original volume = 285 mL
β is the coefficient of expansion of glycerine and from online tables, it has a value of 5.97 × 10^(-4) °C^(−1)
Δt is change in temperature = final temperature - initial temperature = 32 - 20 = 12 °C
Thus, plugging in relevant values;
V_f = 285(1 + (5.97 × 10^(-4) × 12))
V_f = 287.04 mL