Answer:=14,160 kJ
Explanation: Let m1 and m2 be the initial and final amounts of mass within the tank, respectively. The steam properties are listed in the table below
Specific Internal SpecificTemp Pressure Volume Energy Enthalpy Quality Phase
C MPa m^3/kg kJ/kg kJ/kg
1 260 4.689 0.02993 2158 2298 0.7 Liquid Vapor Mixture
2 260 4.689 0.0422 2599 2797 1 Saturated Vapor
The mass initially contained in the tank is m1 = V/v1
m1 =0.85 m^3 /0.02993 m^3 /kg
= 28.4 kg
The mass finally contained in the tank is
m2 =V2/v
= 0.85 m^3 /0.0422 m^3 /kg
= 20.14 kg
The heat transfer is then
Qcv = m2u2 − m1u1 − he(m2 − m1)
Qcv = (20.14)(2599) − (28.4)(2158) − (2797)(20.14 − 28.4) = 14,160 kJ
Answer:
(A) 0.3488 rad/sec
(B) 124.246 m
Explanation:
We have given car completes one revolution in 18 sec'
So time period T= 18 sec
Tangential speed v = 43.4 m/sec
(A) Angular velocity is given by 
(B) Tangential velocity is given v = 43.4 m /sec
We know that 

Answer:
B) Yes, but only those electrons with energy greater than the potential difference established between the grid and the collector will reach the collector.
Explanation:
In the case when the collector would held at a negative voltage i.e. small with regard to grid So yes the accelerated electrons would be reach to the collecting plate as the kinetic energy would be more than the potential energy that because of negative potential
so according to the given situation, the option b is correct
And, the rest of the options are wrong
The answer is C, as the frequency gets higher the wavelength gets shorter