Answer: (2) releases 2260 J/g of heat energy
Explanation:
Latent heat of vaporization is the amount of heat required to convert 1 mole of liquid to gas at atmospheric pressure.
Latent heat of condensation is energy released when 1 mole of vapor condenses to form liquid droplets.
The temperature does not change during this process, so heat released goes into changing the state of the substance, thus it is called latent which means hidden. The energy released in this process is same in magnitude as latent heat of vaporization. The heat of condensation of water vapour is about 2,260 J/g.
Answer:
The final mass of sample is 1.3 g.
Explanation:
Given data:
Half life of H-3 = 12.32 years
Amount left for 15.0 years = 3.02 g
Final amount = ?
Solution:
First all we will calculate the decay constant.
t₁/₂ = ln² /k
t₁/₂ =12.32 years
12.32 y = ln² /k
k = ln²/12.32 y
k = 0.05626 y⁻¹
Now we will find the original amount:
ln (A°/A) = Kt
ln (3.02 g/ A) = 0.05626 y⁻¹ × 15.0 y
ln (3.02 g/ A) = 0.8439
3.02 g/ A = e⁰°⁸⁴³⁹
3.02 g/ A = 2.33
A = 3.02 g/ 2.33
A = 1.3 g
The final mass of sample is 1.3 g.
mol of Na2CO3 = 2.36 x 10⁻⁴
<h3>Further explanation</h3>
Given
Mass : 0.025 g of Na2CO3
Required
moles
Solution
The mole is the number of particles contained in a substance
1 mol = 6.02.10²³
Moles can also be determined from the amount of substance mass and its molar mass :
mol = mass : molar mass
mass = mol x molar mass
Input the value :
mol = mass : MW Na2CO3
mol = 0.025 g : 106 g/mol
mol = 2.36 x 10⁻⁴