-- The position of the sun was originally the primary influence in determining
when people went to sleep and when they woke up. Although it no longer
directly influences us, that pattern is so deeply ingrained in our make-up
that our behavior still largely coincides with the positions of the sun.
-- The position of the Moon was originally the primary influence in determining
the cycle of human female physiology. Although it no longer directly influences
us, that pattern is so deeply ingrained in human make-up that the female cycle
still largely coincides with the positions of the Moon.
Answer:
2.2 meters
Explanation:
Potential energy, PE created by a charge, q at a radius r from the charge source, Q, is expressed as:

is Coulomb's constant.
#The electric field,
at radius r is expressed as:

From i and ii, we have:


#Substitute actual values in our equation:

Hence, the distance between the charge and the source of the electric field is 2.2 meters
Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J
Answer:
v = 5.166 10² m / s
Explanation:
We can solve this exercise using the kinematics equations
v = v₀ + at
as the bullet starts from rest its initial velocity is zero
v = a t
let's calculate
v = 6.3 10⁵ 8.2 10⁻⁴
v = 5.166 10² m / s