The displacement is 2 m south
Explanation:
Distance and displacement are two different quantities:
- Distance is the total length of the path covered by an object during its motion, regardless of the direction. It is a scalar quantity
- Displacement is a vector connecting the initial position to the final position of motion of an object. The magnitude of the displacement is the distance in a straight line between the two points
For the car in this problem, the motion is:
10 m south
8 m north
Taking north as positive direction, we can describe the two parts of the motion as

m
Therefore, the final position of the car with respect to the original position is

which means 2 m south: so, the displacement of the car is 2 m south.
Learn more about distance and displacement:
brainly.com/question/3969582
#LearnwithBrainly
Answer:
2621.25 meters
Explanation:
First, write down what we are given.
Initial velocity = 27.5 m/s
Final velocity = 42.4 m/s
Time = 75 seconds
We need to look at the kinematic equations and determine which one will be best. In this case, we need an equation with distance. I am going to use
, but you can also use the other equation, 
We need to find acceleration. To find it, we need to use the formula for acceleration:
. Plugging in values, 
Next, plug in what we know into the kinematics equation and solve for distance. 
The NE Patriots will. Just you wait and see. And when thay do, remember
that you saw the correct prediction right here on Brainly, posted by AL2006.
Answer:
30m/s
Explanation:
From law of motion equation
Vf= Vi + at
Where Vf= final velocity
Vi= initial velocity=0(the car started at rest)
a= acceleration= 3m/s2
t= time= 10s
Then substitute into the equation to get the final velocity.
Vf= 0+(10×3)
Vf= 30m/s
Hence, the car's final velocity is 30m/s
Precision because it’s the answer