Explanation:
- Newton's first law of motion:
"An object at rest (or in uniform motion) remains at rest (or in uniform motion) unless acted upon an unbalanced force
In this situation, we can apply Newton's first law to the keys of the keyboard that are not hit by the fingers of the man. In fact, as no force act on the keys, they remain at rest.
- Newton's second law of motion:
"The acceleration experienced by an object is proportional to the net force exerted on the object; mathematically:

where F is the net force, m is the mass of the object, and a its acceleration"
In this case, we can apply Newton's second law to the keys of the keyboard that are hit by the man: in fact, as they are hit, they experience a downward force, and therefore they experience a downward acceleration.
"Newton's third law of motion:
"When an object A exerts a force on an object B (action force), then object B exerts an equal and opposite force on object A (reaction force)"
Here We can apply Newton's third law to the pair of objects finger-key: in fact, as the finger apply a force on the key (action force), then the key exerts a force back on the finger (reaction force), equal and opposite.
Good morning dear...
Have a beautiful and joyful day ahead.
Answer:
During <u>winter (late December/early January)</u> the Earth is closest to the Sun and during <u>summer (late June/early July)</u> the Earth is farthest from the Sun.
Explanation:
In the northern hemisphere, the earth usually comes closer to the sun during the time of winter season, mostly in late December or early January.
On the other hand, the earth is farthest from the sun during the time of summer season, mostly in late June or early July.
When the earth is closer to the sun, during the winter, it is comparatively cold. It is due to the absorption of a lesser amount of incoming solar radiation. The tilt of the earth is also responsible for this low temperature.
But, when the earth is farthest from the sun, during the summer, it is comparatively hot. It is due to the absorption of a large amount of incoming solar radiation.
Answer:
d. lower than the original pitch and decreasing as he falls.
Explanation:
As per the Doppler effect when the pitch of the sound increases as the source approaches the observer and decreases as the source moves away. A classic example of this increasing pitch of ambulance siren as it approaches you and decreasing pitch of the siren as it goes away from you.
The same effect is applicable here as well. As the character keep falling, it is moving away from the observer so the pitch of his scream will keep on decreasing.