The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?
Answer:
The distance traveled in 1 year is:
Explanation:
Given
--- speed
--- time
Required
The distance traveled
This is calculated as:

So, we have:

This gives:


-- approximated
The fast lap is irrelevant to the question, because it didn't happen
until after the 9 laps that you're interested in.
To be perfectly technical about it, we don't actually have enough
information to answer the question. You told us her average speed
for 10 laps, but we don't know anything about how her speed may
have changed during the whole 10 laps. For all we know, maybe
she took a nap first, and then got up and drove 10 laps at the speed
of 125 metres per second. That would produce the average speed
of 12.5 metres per second and we would never know it Why not ?
That's only 280 miles per hour. Bikes can do that, can't they ?
IF we can assume that Amy maintained a totally steady pace through
the entire 10 laps, then we could say that her average for 9 laps was
also 12.5 metres per second.
Answer:
2.5m/s²
Explanation:
a = v/t
Where;
V = velocity (m/s)
a = acceleration (m/s²)
t = time (s).
According to the information provided in this question,
a = ?
v = 10m/s
t = 4
a = 10/4
a = 2.5m/s²
V = 331 m/s
Wavelength = velocity of sound/ frequency
Frequency = velocity of sound / wavelength = 331 m/s : 0.6 m
Frequency = 551.67 s^-1 = 551.67 Hz