Answer:
Looks like mold that got frosted over
Explanation:
Answer:
Dr. Engelbart, who would later help develop the computer mouse and other personal computing technologies, theorized that as electronic circuits were made smaller, their components would get faster, require less power and become cheaper to produce — all at an accelerating pace
Answer:
809.98°C
Explanation:
STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.
Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.
Biot value = (220 × 0.1)÷ 110 = 0.2.
Biot value = 0.2.
STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;
Fourier number = thermal diffusivity × time ÷ (length)^2.
Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.
STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.
Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.
= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.
Answer:
Speed of aircraft ; (V_1) = 83.9 m/s
Explanation:
The height at which aircraft is flying = 3000 m
The differential pressure = 3200 N/m²
From the table i attached, the density of air at 3000 m altitude is; ρ = 0.909 kg/m3
Now, we will solve this question under the assumption that the air flow is steady, incompressible and irrotational with negligible frictional and wind effects.
Thus, let's apply the Bernoulli equation :
P1/ρg + (V_1)²/2g + z1 = P2/ρg + (V_2)²/2g + z2
Now, neglecting head difference due to high altitude i.e ( z1=z2 ) and V2 =0 at stagnation point.
We'll obtain ;
P1/ρg + (V_1)²/2g = P2/ρg
Let's make V_1 the subject;
(V_1)² = 2(P1 - P2)/ρ
(V_1) = √(2(P1 - P2)/ρ)
P1 - P2 is the differential pressure and has a value of 3200 N/m² from the question
Thus,
(V_1) = √(2 x 3200)/0.909)
(V_1) = 83.9 m/s