Answer:
The maximum discharge rate of water is 4.6 L/s
Explanation:
Given data:
d=diameter=8 m
h=height=3 m
The mathematical expression for the theoritical velocity is:

The maximum discharge can be calculate by:

Here
Cd=coefficient of discharge=0.855

 
        
             
        
        
        
Answer:
 h_f = 15 ft, so option A is correct 
Explanation:
The formula for head loss is given by;
h_f = [10.44•L•Q^(1.85)]/(C^(1.85))•D^(4.8655))
Where;
h_f is head loss due to friction in ft
L is length of pipe in ft
Q is flow rate of water in gpm
C is hazen Williams constant
D is diameter of pipe in inches
We are given;
L = 1,800 ft
Q = 600 gpm
C = 120
D = 8 inches
So, plugging in these values into the equation, we have;
h_f = [10.44*1800*600^(1.85)]/(120^(1.85))*8^(4.8655))
h_f = 14.896 ft. 
So, h_f is approximately 15 ft
 
        
             
        
        
        
Answer:
def output_ints_less_than_or_equal_to_threshold(user_values, upper_threshold):
    for value in user_values:
        if value < upper_threshold:
            print(value)  
def get_user_values():
    n = int(input())
    lst = []
    for i in range(n):
        lst.append(int(input()))
    return lst  
if __name__ == '__main__':
    userValues = get_user_values()
    upperThreshold = int(input())
    output_ints_less_than_or_equal_to_threshold(userValues, upperThreshold)
 
        
             
        
        
        
Answer:
N = 38546.82 rpm
Explanation:
 = 150 mm
 = 150 mm 

               = 17671.45 
 = 250 mm
 = 250 mm 

               = 49087.78 
The centrifugal force acting on the flywheel is fiven by
F = M (  -
 -  ) x
 ) x  ------------(1)
 ------------(1)
Here F = ( -UTS x  + UCS x
 + UCS x  )
 )
Since density, 
                         
                         

                         
                         
∴  -
 -  = 50 mm
 = 50 mm
∴ F = 
   F = 33618968.38 N --------(2)
Now comparing (1) and (2)

∴ ω = 4036.61
We know 


∴ N = 38546.82 rpm
 
        
             
        
        
        
Answer:
7.94 ft^3/ s.
Explanation:
So, we are given that the '''model will be 1/6 scale (the modeled valve will be 1/6 the size of the prototype valve)'' and the prototype flow rate is to be 700 ft3 /s. Then, we are asked to look for or calculate or determine the value for the model flow rate. 
Note that we are to use Reynolds scaling for the velocity as par the instruction from the question above.
Therefore; kp/ks = 1/6.
Hs= 700 ft3 /s and the formula for the Reynolds scaling => Hp/Hs = (kp/ks)^2.5.
Reynolds scaling==> Hp/ 700 = (1/6)^2.5.
= 7.94 ft^3/ s