Answer:

Explanation:
The apparent brightness follows an inverse square law, therefore we can write:

where I is the apparent brightness and r is the distance from the Sun.
We can also rewrite the law as
(1)
where in this problem, we have:
apparent brightness at a distance
, where
million km
We want to estimate the apparent brightness at
, where
is ten times
, so

Re-arranging eq.(1), we find
:

<span>The four goals of psychology are: describe observed phenomena, explain them, predict what may occur as a result of them and control behaviour as a result. Julie’s psychologist has helped Julie control her behaviour - her fear response to spiders - so they have met the ‘control behaviour’ goal of psychology.</span>
Answer:
3.88 * 10^(-15) J
Explanation:
We know that the Potential energy of the electron at the beginning of its motion is equal to the Kinetic energy at the end of its motion, when it reaches the plates.
First, we get the potential and potential energy:
Electric potential = E * r
E = electric field
r = distance between plates
Potential = 2.2 * 10^6 * 0.011
= 2.42 * 10^4 V
The relationship between electric potential and potential energy is:
P. E. = q*V
q = charge of electron = 1.602 * 10^(-19) C
P. E. = 2.42 * 10^4 * 1.602 * 10^(-19)
P. E. = 3.88 * 10^(-15) J
Given:
v = 50.0 m/s, the launch velocity
θ = 36.9°, the launch angle above the horizontal
Assume g = 9.8 m/s² and ignore air resistance.
The vertical component of the launch velocity is
Vy = (50 m/s)*sin(50°) = 30.02 m/s
The time, t, to reach maximum height is given by
(30.02 m/s) - (9.8 m/s²)*(t s) = 0
t = 3.0634 s
The time fo flight is 2*t = 6.1268 s
The horizontal velocity is
u = (50 m/s)cos(36.9°) = 39.9842 m/s
The horizontal distance traveled at time t is given in the table below.
Answer:
t, s x, m
------ --------
0 0
1 39.98
2 79.79
3 112.68
4 159.58
5 199.47
6 239.37