Answer:
Length of the sides of the square loop is given by
s = √[(τ)/(NIB sin θ)]
Explanation:
The torque, τ, experienced by a square loop of area, A, with N number of turns around the loop and current of I flowing in the wire, with a magnetic field presence, B, and the plane of the loop tilted at angle θ to the x-axis, is given by
τ = (N)(I)(A)(B) sin θ
If everything else is given, the length of a side of the square loop, s, can be obtained from its Area, A.
A = s²
τ = (N)(I)(A)(B) sin θ
A = (τ)/(NIB sin θ)
s² = (τ)/(NIB sin θ)
s = √[(τ)/(NIB sin θ)]
In this question, τ = 0.076 N.m, I = 1.70 A
But we still need the following to obtain a numerical value for the length of a side of the square loop.
N = number of turnsof wire around the loop
B = magnetic field strength
θ = angle to which the plane of the loop is tilted, measured with respect to the x-axis.