Answer:
The magnitude of the electric field is 
Explanation:
Given that,
Time t = 2.10 s
Speed = 160 m/s
Specific charge =Ratio of charge to mass = 0.100 C/kg
We need to calculate the acceleration
Using equation of motion

Put the value into the formula


We need to calculate the magnitude of the electric field
Using formula of electric field



Put the value into the formula


The direction is upward.
Hence, The magnitude of the electric field is 
Answer:
7.39ev
Explanation:
Energy levels are found inside the atom. Electrons occupy these energy levels depending on the energy they possess. Electrons can move from one energy level to another due to absorption or emission of a photon or other factors. As the electron, jumps from a higher energy level to a lower energy level emitting a photon of measurable frequency, the photon carries energy equal to the amount of energy between the gap of the levels. This idea was first proposed by Neils Bohr and became the forerunner of the wave mechanical model of the atom.
Hence the energy of a photon is the energy of the gap between the two energy levels. Since Ea= 2.48ev and Eg= 10.38 ev.
If an electron jumps from Ea to Eg, the energy of the photon absorbed is given by;
E=Eg-Ea
E= 10.38ev - 2.48ev
E= 7.39ev
Answer:
i think it's 2km pm
Explanation:
2km x 30 60.. start was 30, and now your at 90.. we had to determine how much time it took.. so 2 is the average.. or atleast per minute and sorry it i still didnt answer ur question lol im just trynna help
Answer:
Worldwide Radio Communication
Explanation:
The ionosphere is important because it is through the ionosphere that world wide radio communication is possible.
Answer:
Explanation:
a is the acceleration
μ is the coefficient of friction
Acceleration of the object is given by

Velocity at the bottom

after travelling 4m , its velocity becomes 0



Coefficient of kinetic friction
μ = F/N

Therefore, the Coefficient of kinetic friction is 0.31