We learned that We are in the disk of the Galaxy, about 5/8 of the way from the center.
<h3>
</h3><h3>What is the work of Harlow Shapley?</h3>
Shapley, who was based in Boulder, Colorado, utilised Cepheid variable stars to determine the Milky Way Galaxy's size and the Sun's location within it through the use of parallax. He put out his "liquid water belt" theory, now referred to as the idea of a livable zone, in 1953.
Milky way Galaxy-
There are many stars, grains of dust, and gas in the Milky Way. It is known as a spiral galaxy because, from the top or bottom, it would appear to be whirling like a pinwheel. About 25,000 light-years from the galaxy's nucleus, the Sun is situated on one of the spiral arms.
Approximately 5/8 of the way from the galaxy's nucleus, we are in the disc. William Herschel believed that the Sun and Earth were about in the middle of the vast cluster of stars known as the Milky Way.
to learn more about Harlow Shapley's original estimate go to - brainly.com/question/28145909
#SPJ4
Answer:
The amount of energy that would be released is equal to 4182 Joules.
Explanation:
Total amount of coke = 2 kg = 2000 g
1 calorie per gram is equal to 4.184 Joules of energy
4.184 J/gC*2000g = 8368 J
1 food calorie is roughly equal to 4186 J
8368 - 4186
Therefore, the amount of energy that would be released is equal to 4182 Joules.
Answer:
<h2>154.73N</h2>
Explanation:
The question is incomplete. Here is the complete question.
Using the strap at an angle of 31° above the horizontal, a Grade 12 Physics student, tired from studying, is dragging his 15 kg school bag across the floor at a constant velocity. (a) If the force of tension in the strap is 51 N, what is the normal force.
Check the diagram related to the question in the attachment below for better understanding.
The normal force is the reaction acting perpendicular to the force of tension in the strap and opposite the weight of the bag. They are the forces acting along the vertical.
The normal force N will be the sum of the force of tension acting along the vertical (Ty) and the weight of the bag (W).
Ty = 15sin31°
Ty = 7.73N
W = mass * acceleration due to gravity
W = 15.0*9.8
W = 147N
The normal force is therefore expressed as;
N = Ty + W
N = 7.73 + 147
N = 154.73N
The snail’s speed is 0.001042. Hope this helps!