Answer:
The maximum value of the induced magnetic field is
.
Explanation:
Given that,
Radius of plate = 30 mm
Separation = 5.0 mm
Frequency = 60 Hz
Suppose the maximum potential difference is 100 V and r= 130 mm.
We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


When r>R, the magnetic field is inversely proportional to the r.
We need to calculate the maximum value of the induced magnetic field that occurs at r = R
Using formula of magnetic filed

Where, R = radius of plate
d = plate separation
V = voltage
Put the value into the formula


Hence, The maximum value of the induced magnetic field is
.
In ur explanation make sure to use the terms
I can't see that cube from here.
But if the length of the side of the cube is ' K ' units,
then the surface area of the cube is 6K² units², and
the volume of the cube is K³ units³.
The ratio of the surface area to the volume is
(6K² units²) / (K³ units³) = (6) / (K units) .
So for example, if the side of the cube is 2 inches, then
the ratio of surface area to volume is "3 per inch".
That's the answer. I did the whole thing in order to earn
the points, but I don't expect you to understand much of it,
because I see from your username that you suck at math.
I'm sorry you decided that. Now that you've put up the
brick wall, it'll be even harder for any math to find its way
in there, and you'll miss out on a lot of the fun.
Answer:
184 feets
Explanation:
Given the data:
time (sec) __ velocity (ft/sec)
0 __________30
1 __________ 54
2 __________56
3 __________34
4 __________ 8
5 __________ 2
6 __________22
Using left end approximation:
(0,1) ___ f(0) = 30
(1,2) ___ f(1) = 54
(2,3) ___f(2) = 56
(3,4) ___f(3) = 34
(4,5) ___f(4) = 8
(5,6) __ f(5) = 2
Hence, the Total distance traveled during the 6 second interval is:
Change ; dT = 1
1 * (30 + 54 + 56 + 34 + 8 + 2) = 184