Answer:
ddition, please state if transportation engineers are involved with any other ... Please specify their specific roles and contributions in the execution of the ...
Answer:
hello your question has some missing information attached to the answer is the missing component
Answer : αaxial,p = -6.034 ksi ( compressive )
αbend,p = 19.648 ksi ( tensile )
Explanation:
αaxial, p =
equation 1
αbend, p =
equation 2
P = load = 35 kips
A = area of column = 5.8 
d = column cross section depth = 9.5 in
= 55.0 
Hence equation 1 becomes
αaxial,p = -35 / 5.8 = - 6.034 ksi ( compressive )
equation 2 becomes
αbend, p =
= + 19.648 ksi ( tensile )
Answer:
Mechanical engineering is an engineering discipline that combines engineering physics and mathematics principles with materials science to design, analyze, manufacture, and maintain mechanical systems.
Answer:
coupling is in tension
Force = -244.81 N
Explanation:
Diameter of Hose ( D1 ) = 35 mm
Diameter of nozzle ( D2 ) = 25 mm
water gage pressure in hose = 510 kPa
stream leaving the nozzle is uniform
exit speed and pressure = 32 m/s and atmospheric
<u>Determine the force transmitted by the coupling between the nozzle and hose </u>
attached below is the remaining part of the detailed solution
Inlet velocity ( V1 ) = V2 ( D2/D1 )^2
= 32 ( 25 / 35 )^2
= 16.33 m/s