Answer:
T₂ = 150 K
Explanation:
Given data:
Initial volume = 4 L
Initial temperature = 300 K
Final volume = 2 L
Final temperature = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 300 K × 2L / 4 L
T₂ = 600 L.K / 4 L
T₂ = 150 K
It is called a waxxing gibbous, pls brainliest
Starting from the radon mass, add the mass of the electron, and subtract the mass attributable to the gamma radiation <u>(931 Mev = 1 amu).</u>
<u></u>
<h3>
What is gamma radiation?</h3>
Gamma radiation (gamma rays) refers to the part of the electromagnetic spectrum with the most energy and shortest wavelength. Astrophysicists define gamma radiation as any radiation with an energy above 100 keV. Physicists define gamma radiation as high-energy photons released by nuclear decay.
Using the broader definition of gamma radiation, gamma rays are released by sources including gamma decay, lightning, solar flares, matter-antimatter annihilation, the interaction between cosmic rays and matter, and many astronomical sources. Gamma radiation was discovered by Paul Villard in 1900.
Gamma radiation is used to study the universe, treat gemstones, scan containers, sterilize foods and equipment, diagnose medical conditions, and treat some forms of cancer.
Learn more about gamma radiation
brainly.com/question/20799041
#SPJ4
At the first reaction when 2HBr(g) ⇄ H2(g) + Br2(g)
So Kc = [H2] [Br2] / [HBr]^2
7.04X10^-2 = [H2][Br] / [HBr]^2
at the second reaction when 1/2 H2(g) + 1/2 Br2 (g) ⇄ HBr
Its Kc value will = [HBr] / [H2]^1/2*[Br2]^1/2
we will make the first formula of Kc upside down:
1/7.04X10^-2 = [HBr]^2/[H2][Br2]
and by taking the square root:
∴ √(1/7.04X10^-2)= [HBr] / [H2]^1/2*[Br]^1/2
∴ Kc for the second reaction = √(1/7.04X10^-2) = 3.769