C2H2 is the right answer I believe
Answer:
<em>A solution containing 60 grams of nano3 completely dissolved in 50. Grams of water at 50°c is classified as being</em> <u>supersaturaded</u>
Explanation:
This question is about solubility.
Regarding solubility, the solutions may be classified as:
- Unsaturated: the concentration is below the maximum concentration permited at the given temperature.
- Saturated: the concentration is the maximum permitted at the given temperature, under normal conditions.
- Supersaturated: the concentration has overcome the maximum permitted at the given temperature. This is possible only under special conditions and is a very unstable state.
Each substance has its own, unique solubility properties. So, in order to tell the state of the solution you need to compare with either solubility tables, or solubility curves; or run you own experiments.
- In internet you can find the solubility curve of NaNO₃ showing the solubility for a wide range of temperatures.
- In such curve the solubility of NaNO₃ at 50°C is about 115 g of NaNO₃ per 100 g of water.
- Hence, do the proportion to determine the amount of solute that can be dissolved in 50 grams of water at 50°CÑ
115 g NaNO₃ / 100 g H₂O = x / 50 g H₂O ⇒ x = 57.5 g NaNO₃
- <u>Conclusion</u>: 50 grams of water can contain 57.5 g of NaNO₃ dissolved; so, <em>a solution containing 60 g of NaNO₃ completely dissolved in 50 grams of water is supersaturated.</em>
<em />
Answer:
A) 54.04%
B) 13-karat
Explanation:
A) From the problem we have
<em>1)</em> Mg + Ms = 9.40 g
<em>2)</em> Vg + Vs = 0.675 cm³
Where M stands for mass, V stands for volume, and g and s stand for gold and silver respectively.
We can rewrite the first equation using the density values:
<em>3)</em> Vg * 19.3 g/cm³ + Vs * 10.5 g/cm³ = 9.40
So now we have<em> a system of two equations</em> (2 and 3) <em>with two unknowns</em>:
We <u>express Vg in terms of Vs</u>:
We <u>replace the value of Vg in equation 3</u>:
- Vg * 19.3 + Vs * 10.5 = 9.40
- (0.675-Vs) * 19.3 + Vs * 10.5 = 9.40
- 13.0275 - 19.3Vs + 10.5Vs = 9.40
Now we <u>calculate Vg</u>:
- Vg + 0.412 cm³ = 0.675 cm³
We <u>calculate Mg from Vg</u>:
- 0.263 cm³ * 19.3 g/cm³ = 5.08 g
We calculate the mass percentage of gold:
- 5.08 / 9.40 * 100% = 54.04%
B)
We multiply 24 by the percentage fraction:
- 24 * 54.04/100 = 12.97-karat ≅ 13-karat
<u>Answer:</u>
<em>Here the given material is taken and mixed with water.</em>
<u>Explanation:</u>
The amount of material and water taken are same. Hence if it is not soluble in water it should make a dense and flowy paste like material and if it is soluble in water it should this and thicker density of water should remain.
If the amount of water that we are taking is more than the material will float in water if it is not soluble and lighter than water or would sink if it is heavier than water.
<h3>
Answer:</h3>
91.2 g Mn
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 1.00 × 10²⁴ atoms Mn
<u>Step 2: Identify Conversions</u>
Avogadro's Numer
[PT] Molar Mass of Mn - 54.94 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
91.2321 g Mn ≈ 91.2 g Mn