a) 32 kg m/s
Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

where
is the momentum of the spring. For the conservation of momentum,

b) -32 kg m/s
The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

c) 64 N
The change in momentum is equal to the product between the average force and the time of the interaction:

Since we know
, we can find the magnitude of the force:

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.
d) The force calculated in the previous step (64 N) is larger than the force of 32 N.
Answer:
A system is a group of interrelated interacting, or interdependent parts that for a complex whole. A system is a group of interrelated interacting, or interdependent parts that for a complex whole.
Explanation: Hope this helps ;)
Answer:
<h2>2540.16 J</h2>
Explanation:
The gravitational potential energy of a body can be found by using the formula
GPE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 9.8 m/s²
From the question we have
GPE = 72 × 9.8 × 3.6 = 2540.16
We have the final answer as
<h3>2540.16 J</h3>
Hope this helps you
To solve this problem we will apply the work theorem which is expressed as the force applied to displace a body. Considering that body strength is equivalent to weight, we will make the following considerations



Work done to upward the object



Horizontal Force applied while carrying 10m,


Height descended in setting the child down




For full time, assuming that the total value of work is always expressed in terms of its symbol, it would be zero, since at first it performs the same work that is later complemented in a negative way.