Answer:
3 times louder
Explanation:
The Loudness in decibel Db L = 10㏒(I/I₀) where I = sound intensity level and I₀ = threshold of hearing = 10⁻¹² W/m².
Now, for Jessica, I₁ = sound intensity level of Jessica's music = 10⁻⁹
and I₂ = sound intensity level of Braylee's music = 10⁻³
So, substituting the variables into the equation, we have
L₁ = 10㏒(I₁/I₀)
L₁ = 10㏒(10⁻⁹/10⁻¹²)
L₁ = 10㏒(10³)
L₁ = 3 × 10㏒10
L₁ = 30㏒10
L₁ = 30 dB
Now, for Braylee, I₂ = sound intensity level of Braylee's music = 10⁻³
So, substituting the variables into the equation, we have
L₂ = 10㏒(I₁/I₀)
L₂ = 10㏒(10⁻³/10⁻¹²)
L₂ = 10㏒(10⁹)
L₂ = 9 × 10㏒10
L₂ =90㏒10
L₂ = 90 dB
So, the number of times Braylee's music is louder than Jessica's music is L₂/L₁ = 90 dB/30 dB = 3
So, Braylee's music is 3 times louder than Jessica's music
Answer:

Explanation:
Let us imagine that there are three wire of length equal length having equal resistances each of 44/3 Ω
Now connect these wires in parallel to so that their equivalent resistance is R.
then



⇒
To establish the age of a rock or a fossil, researchers use some type of clock to determine the date it was formed. Geologists commonly use radiometric dating methods, based on the natural radioactive decay of certain elements such as potassium and carbon, as reliable clocks to date ancient events.
Answer:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. Since the force required to lift it is equal to its weight, it follows that the gravitational potential energy is equal to its weight times the height to which it is lifted.
Correct answer choice is :
B) Upwarped
Explanation:
An upwarped mountain is a mountain consisting of a large area of the Earth's coat that has led smoothly upward without much visible deformation and normally including sedimentary, igneous, and metamorphic rocks. Sedimentary rocks are set down in layers called beds or layers. A bed is described as a layer of rock that has a similar lithology and character. Beds form by the removal of layers of sand on top of each other.