Four regions of the electromagnetic spectrum that astronomers use when observing objects in the space are the following enumerated answers.
1. First is Ultraviolet
2. Next is Infrared
3. Then the radio
4. Lastly the Visible lights.
These are the answers to the problem.
This is problem of free falling
objects, which can be solved using the formula:
V = sqrt(2gy)
Where v is the velocity upon
impact
G is the acceleration due to
gravity ( 9.81 m/s2)
Y is the height
Since Venessa is 3.5 m
Y = 30 -3.5 = 26.5 m
V = sqrt(2 (9.81 m/s2) ( 26.5
m))
<span>V = 22.8 m/s</span>
Answer:
(a)
(b) 
Explanation:
Part (a)
The total length of copper cord L=86.3 m
The cross sectional area A=1.71×10⁻⁶m²
The resistivity of copper p=1.72×10⁻⁸Ω
Thus the resistance of extension cord is

Part (b)
The resistance of trimmer Rt=17.9 ohms
When voltage of 120V is applied then the current I is passing through series circuit is

Thus the voltage across the trimmer is:

Let u = the speed of the car at the instant when braking begins.
The braking distance is s = 62.3 m, the acceleration is a = -5.9 m/s², and the braking duration is t = 4.15 s.
Use the formula s = ut + (1/2)at² to obtain
(u m/s)*(4.15 s) + 0.5*(-5.9 m/s²)*(4.5 s)² = (62.3 m)
4.15u = 62.3 + 50.8064 = 113.1064
u = 27.2546 m/s
Let v m/s be the speed with which the car strikes the tree.
Then
v = 27.2546 - 5.9*4.15
= 2.7696 m/s
Answer: 2.77 m/s (nearest hundredth)
The Newton’s law Nikolas would use to come up with this idea is the <span>Third law that states:
</span><span>When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
</span>
So, in this case, let's name the first Body
A which is the skateboard and the second body
B which is <span>the compressed carbon dioxide in a fire extinguisher. Then, as shown in the figure below, according to the Third law:
</span>

<span>
</span>