<span>4FeS2 + 11O2 = 2Fe2O3 + 8SO2</span>
Percent yield is calculated as the actual yield divided by the theoretical yield multiplied by 100.
Actual yield = 55 g ( 1 mol / 159.69 g ) = 0.34 mol Fe2O3
To find for the theoretical yield, we first determine the limiting reactant.
100 g O2 ( 1 mol / 32 g) = 3.13 mol O2
200 g FeS2 (1 mol / 119.98g) = 1.67 mol FeS2
Therefore, the limiting reactant is O2.
Theoretical yield = 3.13 mol O2 ( 2 mol Fe2O3 / 11 mol O2 ) = 0.57 mol Fe2O3
Percent yield = (0.34 mol / 0.57 mol) x 100 = 59.74%
Explanations:- Part 1: We could count the total number of electrons by looking at the electron configurations. Both of these electrons configurations have 47 electrons. If we look at the periodic table then 47 is the atomic number of silver. So, the name of the element is silver and its represented as Ag.
Part 2: As per the rule, Completely filled and half filled orbitals are more stable. First electron configuration has 9 electrons in 4d and we know that d is more stable if it has 5 electrons(half filled) or it has 10 electrons(full filled).
For stability reasons, one of the electron from 5s goes to 4d and for this reason the second electron configuration is found most often in nature for silver.
Few other examples are Cr and Cu.
Explanation:
Aquifers are porous and permeable formations that stores ground water. The ground water system is made up of mostly fresh water.
- An aquifer acts as a reserve for ground water in the environment.
- By passing through different formations, water that recharges them are purified.
- This makes them fresh and mostly free from salt intrusion
An aquifer is able to store this fresh water and it is is good prospect for sourcing ground water.
Answer:
The minimum concentration of Cl⁻ that produces precipitation is 12.6M
Explanation:
The Ksp of PbCl₂ is expressed as:
PbCl₂(s) → Pb²⁺(aq) + 2Cl⁻(aq)
The Ksp is:
Ksp = 1.6 = [Pb²⁺] [Cl⁻]²
When Ksp = [Pb²⁺] [Cl⁻]² the solution begind precipiration.
A 0.010M Pb(NO₃)₂ is 0.010M Pb²⁺, thus:
1.6 = [0.010M] [Cl⁻]²
160 = [Cl⁻]²
12.6M = [Cl⁻]
<h3>The minimum concentration of Cl⁻ that produces precipitation is 12.6M</h3>