The time needed for the hammer to reach the surface of the Earth is 3.54 s.
<h3>
Time of motion of the hammer</h3>
The time of motion is calculated as follows;
t = √(2h/g)
where;
- h is height of fall
- g is acceleration due to gravity
t = √(2 x 10 / 1.6)
t = 3.54 s
Thus, the time needed for the hammer to reach the surface of the Earth is 3.54 s.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
Answer:
I don't know this answer at all
Explanation:
I don't know about these problems
Answer:
θ=19.877⁰
Explanation:
Given data
Velocity Va=34.0 km/h
Velocity Va=100 km/h
To find
Angle θ
Solution
We want the bird to fly with velocity Vb=100 km/h with an angle θ relative to the ground so that the bird fly due south relative to the ground.From figure which is attached we got
Sinθ=(Va/Vb)
Sinθ=(34.0/100)
θ=Sin⁻¹(34.0/100)
θ=19.877⁰
Explanation:
because the moon has less mass than earth, the force due to gravity at the lunar surface is only about 1/6 that on earthso,the weight of a body on earth is 6×5N =30N
When the car moves and makes a sound that is louder that when the car is just sitting there