Answer:
mole fraction of N_2 O = 0.330
mole of fraction SF_4 = 0.669
PRESSURE OF N_2 O = 39127.053 Pa
pressure of SF_4 = 792126.36
Total pressure = 118253.413 Pa
Explanation:
Given data:
volume of tank 8 L
Weight of dinitrogen difluoride gas 5.53 g
weight of sulphur hexafluoride gas 17.3 g
Amount of 
amount of 
mole fraction of 
mole of fraction
PV = nRT
P of N_2 O 
mole of SF_4
Total pressure = 39127.053 + 79126.36 = 118253.413 Pa
Answer: There would have to be three nitrogen atoms in the products. The law of conservation of matter states that the amount of substance before a reaction occurs should be the same as the amount of substance after the reaction.
Explanation: This is the EXACT sample answer from the test, just reword it if you want. ^
If an object has a higher density than the fluid it is in (fluid can mean liquid or gas), it will sink. If it has a lower density, it will float. Density is determined by an object's mass and volume. If two objects take up the same volume, but have one has more mass, then it also has a higher density.
Answer:
317 g
Explanation:
Cu + 2HCl --> CuCl2 +H2
1 : 2 1 : 1
1 mole of Cu = 63.5 g
1 mole of H2 = 2g
1 mole Cu produces = 1 mole of H2
63.5 g of Cu produces = 2 g of H2
So
10 g of H2 will be produced from = (63.5/2)*10 = 317 g of Copper
<span>The rate of infusion is 2.1L/19h or 2100mL/19h (as 1L = 100 mL).
To convert 19 hours to minutes we multiply as follows:
19 hours = (19 hours) x (60 minutes/1 hour) = 1140 minutes
So the rate of infusion becomes:
2100mL /1140 min
In order to converted mL to drops (gtt) we multiply the rate of infusion with the drop factor to get the drip rate:
(2100mL/1140min) x (20 gtt/mL) = 36.8 gtt/min</span>