The relationship between wavelength

, frequency f and speed of light c for an electromagnetic wave is

Using the data of the problem, we find
Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
Answer:
Explanation:
28 / 70 = 0.3857142... = 0.39 hr
280 / 100 = 2.8 hrs.
(100 - 0) / 10 = 10 m/s²
(60 - 20) / 4 = 10 m/s²
Answer:
15 m/s^2 The first thing to calculate is the difference between the final and initial velocities. So 180 m/s - 120 m/s = 60 m/s So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving 60 m/s / 4.0 s = 15.0 m/s^2 Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2
Explanation:
Answer:
1500 W to 2200 W
Explanation:
Every person does work in his daily day to day life. A person needs energy in order to perform work. And the energy consumed by an individual while performing a daily work is directly responsible to the mount of oxygen consumed by the person.
The USDA is the federal agency which looks after the food and agriculture matters of the US government. It deals with and formulates different policies and laws for the country and it s people. It recommends about 2000 calories per day for women and for men it recommends about 2500 calorie per days of food intake.
Accordingly, the average power required by a human body for doing regular work is in the range of 1500 W to 2200 W.