If she has a choice and the wiring details are stated on the packaging,
then Janelle should look for lights that are wired in parallel within the
string, and she should avoid lights that are wired in series within the string.
If a single light in a parallel string fails, then only that one goes out.
The rest of the lights in the string continue to shimmer and glimmer.
If a single light in a series string fails, then ALL of the lights in that string
go out, and it's a substantial engineering challenge to determine which light
actually failed.
Answer:
a) x component = -31.25 km/hr
b) y component = 46.64 km/hr
Explanation:
Given data:
A position is 4km north and 2.5 km east to B
Ship A velocity = 22 km/hr
ship B velocity = 40 km/hr
A velocity wrt to velocity of B




putting respective value to get velocity of A with respect to B


a) x component = -31.25 km/hr
b) y component = 46.64 km/hr
Answer:
2,352 Joules
Explanation:
At the ground, the barbell has a classical mechanical energy value of zero. There is no classical kinetic or potential energy for the barbell. The moment the man starts to lift the barbell, he does work on the barbell and transfers kinetic energy to it due to the motion. At its maximum height where the man lifts the barbell to a stop, the kinetic energy is zero because it transformed into gravitational potential energy stored in the gravitational field. Our reference point for potential was defined to be zero at the floor, therefore we can say that the gravitational potential energy at 2 meters is:

Answer:
C) 1 s
Explanation:
The period of a mass-spring system is given by the formula:

where
m is the mass hanging on the spring
k is the spring constant
As we can see from the equation above, the period of the system does NOT depend on the initial amplitude of the oscillation. Therefore, even if the initial amplitude is changed from 5 cm to 10 cm, the period of the system will remain the same, 1 s.