E=274J
h=140cm=1,4m
g≈9,8m/s²
m=?
E=mgh
m=E/gh=274J/9,8m/s²*1,4m≈20kg
"Non nobis Domine, non nobis, sed Nomini tuo da gloriam."
Regards M.Y.
Answer:
The velocity is 19.39 m/s
Solution:
As per the question:
Mass, m = 75 kg
Radius, R = 19.2 m
Now,
When the mass is at the top position in the loop, then the necessary centrifugal force is to keep the mass on the path is provided by the gravitational force acting downwards.


where
v = velocity
g = acceleration due to gravity

Answer:
the distance that the object is raised above its initial position is 5.625 m.
Explanation:
Given;
applied effort, E = 15 N
load lifted by the ideal pulley system, L = 16 N
distance moved by the effort, d₁ = 6 m
let the distance moved by the object = d₂
For an ideal machine, the mechanical advantage is equal to the velocity ratio of the machine.
M.A = V.R

Therefore, the distance that the object is raised above its initial position is 5.625 m.
Answer:
Two marbles are launched at t = 0 in the experiment illustrated in the figure below. Marble 1 is launched horizontally with a speed of 4.20 m/s from a height h = 0.950 m. Marble 2 is launched from ground level with a speed of 5.94 m/s at an angle above the horizontal. (a) Where would the marbles collide in the absence of gravity? Give the x and y coordinates of the collision point. (b) Where do the marbles collide given that gravity produces a downward acceleration of g = 9.81 m/s2? Give the x and y coordinates.
Explanation:
i want the answer i don't know