Answer:
Explanation:
Given
mass of first car 
speed 
radius of first turn=125 m
And Angular momentum is given by =mvr
Angular momentum of first car



similarly 

Thus angular momentum of first car is 1.54 times of second one
C. since the the heat from the heater is going to the child in <u>waves</u>, it’s<u> radiating </u>
We have to add two vectors.
Vector #1: 0.15 m/s north
Vector #2: 1.50 m/s east
Their sum:
Magnitude: √(0.15² + 1.50²)
Magnitude = √(0.0225+2.25)
Magnitude = √2.2725
Magnitude = <em>1.5075 m/s</em>
Direction = arctan(0.15/1.50) north of east
Direction = <em>5.71° north of east</em>
Answer:
a) 
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
a = Acceleration

The acceleration of the bicycle and rider is -1.5 m/s²
Force

The magnitude of the average force needed to bring the bicycle and its rider to a stop is 
Answer:
Answer:
Explanation:
Given that
K=8.98755×10^9Nm²/C²
Q=0.00011C
Radius of the sphere = 5.2m
g=9.8m/s²
1. The electric field inside a conductor is zero
εΦ=qenc
εEA=qenc
net charge qenc is the algebraic sum of all the enclosed positive and negative charges, and it can be positive, negative, or zero
This surface encloses no charge, and thus qenc=0. Gauss’ law.
Since it is inside the conductor
E=0N/C
2. Since the entire charge us inside the surface, then the electric field at a distance r (5.2m) away form the surface is given as
F=kq1/r²
F=kQ/r²
F=8.98755E9×0.00011/5.2²
F=36561.78N/C
The electric field at the surface of the conductor is 36561N/C
Since the charge is positive the it is outward field
3. Given that a test charge is at 12.6m away,
Then Electric field is given as,
E=kQ/r²
E=8.98755E9 ×0.00011/12.6²
E=6227.34N/C