It does produce 'sound' ... a compression wave traveling through the air. But your ears don't hear a sound that's vibrating less than 20 or 30 times every second. If you could swing your pendulum that fast, you could hear the sound of its vibrations pushing the air around.
Answer:
case x py L is in the positive z direction
case y px L the negative z direction
Explanation:
The angular amount is defined by the relation
L = r x p
the bold are vectors, where r is the position vector and p is the linear amount vector.
The module of this vector can be concentrated by the relation
L = r p sin θ
the direction of the vector L can be found by the right-hand rule where the thumb points in the direction of the displacement vector, the fingers extended in the direction of the moment p which is the same direction of speed and the palm points in the direction of the angular momentum L
in the case x py
the thumb is in the x direction, the fingers are extended in the direction and the palm is in the positive z direction
In the case y px
the thumb is in the y direction, the fingers are in the x direction, the palm is in the negative z direction
Kinetic energy is energy of motion.
In the cases of a stretched rubber band, water in a reservoir, natural gas, or an object suspended above the ground, everything is just laying there, and nothing is moving. There's nothing there that has kinetic energy.
If there's any wind, then air is moving. The moving air has kinetic energy.
Answer:

Explanation:
The correct equation follows the law of conservation of energy where kinetic energy is all transformed to potential energy, since we know that kinetic energy is expressed as
while potential energy is mgh where m is the mass of the object, v is the velocity or speed of the object, g is acceleration due to gravity and h is the vertical height. Therefore, relating the two equations we should have 