<h3>Further explanation
</h3>
In general, some people equate mass and weight.
Mass is one of the principal quantities, which is related to the matter , whereas weight is a force that leads to the center of the earth (Earth's gravitational force)
Steps that can be taken to find the mass :
- 1. Weigh graduated cylinder (empty)
- 2. Pour the alcohol in the beaker into the graduated cylinder to the level of 40 ml
- 3. Weigh again graduated cylinder + poured alcohol
- 4. mass of alcohol 40 ml = mass in 3rd step - mass in the first step
Answer:
The answer to your question is: 65.9 g released of CO2
Explanation:
MW CO2 = 44 g
MW CuCO3 = 123.5 g
CO2 released = ?
CuCO3 = 185 g
CuCO3 ⇒ CO2 + CuO
123.5 ----------- 44g
185 g ----------- x
x = (185 x 44) / 123.5
x = 65.9 g released of CO2
The empirical formula, <span>C<span>H2</span></span>, has a relative molecular mass of
<span>1×<span>(12.01)</span>+2×<span>(1.01)</span>=14.04</span>
This means that the empirical formula must be multiplied by a factor to bring up its molecular weight to 70. This factor can be calculated as the ratio of the relative masses of the molecular and empirical formulas
<span><span>7014.04</span>=4.98≈5</span>
Remember that subscripts in molecular formulas must be in whole numbers, hence the rounding-off. Finally, the molecular formula is
<span><span>C<span>1×5</span></span><span>H<span>2×5</span></span>=<span>C5</span><span>H<span>10</span></span></span>
Answer:
78 moles of the solute
Explanation:
From the question;
- Molarity of the solution is 6.50 M
- Volume of the solution is 12.0 L
We want to determine the number of moles needed
We need to know that;
Molarity = Number of moles ÷ Volume
Therefore;
Number of moles = Molarity × Volume
Hence;
Number of moles = 6.50 M × 12.0 L
= 78 moles
Thus, the moles of the solute needed is 78 moles