Answer:
The Forces of Flight
At any given time, there are four forces acting upon an aircraft.
These forces are lift, weight (or gravity), drag and thrust. Lift is
the key aerodynamic force that keeps objects in the air. It is the
force that opposes weight; thus, lift helps to keep an aircraft in
the air. Weight is the force that works vertically by pulling all
objects, including aircraft, toward the center of the Earth. In order
to fly an aircraft, something (lift) needs to press it in the opposite
direction of gravity. The weight of an object controls how strong
the pressure (lift) will need to be. Lift is that pressure. Drag is a
mechanical force generated by the interaction and contract of a
solid body, such as an airplane, with a fluid (liquid or gas). Finally,
the thrust is the force that is generated by the engines of an
aircraft in order for the aircraft to move forward.
Explanation:
Answer:
ugmd = 1/2 kx²
d = (1/2 kx²) / (ugm)
= (1/2 * 250 N/m * (0.2 m)²) / (0.23 * 9.81 m/s² * 0.3 kg)
= 7.4 m
ugmd = 1/2 mv²
v = √2ugd
= √(2(0.23)(9.81 m/s²)(7.4 m)
= 5.8 m/s
Explanation:
This problem uses the relationships among current
I, current density
J, and drift speed
vd. We are given the total of electrons that pass through the wire in
t = 3s and the area
A, so we use the following equation to to find
vd, from
J and the known electron density
n,
so:

<span>The current
I is any motion of charge from one region to another, so this is given by:
</span>

The magnitude of the current density is:

Being:

<span>
Finally, for the drift velocity magnitude vd, we find:
</span>
Notice: The current I is very high for this wire. The given values of the variables are a little bit odd