Answer:
7.19 * 10^14J
Explanation:
Given that
Density of water Pwater= 1000kg/m3
R=2.1km = 2.1*10^3m
H= 2.3cm. = 2.3*10^-2m
Lv water= 2256 * 10^3J/kg
First, mass of water need to be calculated, using an imaginary cylinder
Density= Mass /Volume
Mass= Density* Volume
Volume of a cylinder= πR2h
Therefore mass= PπR2H
= 1000 * π * (2.1 *10^3)^2 * (2.3 * 10^-2)
= 3.18 *10^8
Heat Released Qv = mLV
= 3.18*10^8 * 2236*10^3
= 7.19 * 10^14J
If you're referring to the different colors that usually occur at the tip of missles, rockets and some other aircraft, it either a) signifies the end of a particular plate of metal, fabricated specifically to be for the nose. Sometimes these can even be a different alloy or metal all together. or b) this shows where the curved surface begins, so in the case of damage or imperfections due to wear, they can be repaired and measured more easily. The shape of the nose is extremely important for smooth flight, and a dent or bump formed on it can make the aircraft unstable. If you can measure from where the curve starts by the difference in color, it makes repairing or re-fabricating the part much easier. Many of these curves aren't as simple as they appear.
Answer:
you'll see rocks that have been there for years
Hello,
<u>Solution for A:</u>
Force = 3.00N
Mass = 0.50 Kgs
Time = 1.50 Seconds
According to newton's second law of motion;
Force = Mass times Acceleration(a)
3.00 = 0.50 * a
a = 3.00/0.50 = 6.00 m/s^2
We know that acceleration = Velocity / time
So Velocity = time * acceleration = 1.50 * 6 = 9.00 m/s^2
<u>Solution for B:</u>
The net force = 4.00N - 3.00N = 1.00N to the left
Force = 1.00N
Mass = 0.50Kg
Time = 3.00 Seconds
Again; F = MA (Where F is force, M is mass and A is acceleration)
1.00N = 0.5 * A
A = 1/0.5 = 2 m/s^2
Velocity = Acceleration * Time = 2 * 3 = 6 m/s